David Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121055/publications.pdf

Version: 2024-02-01

516215 454577 15,254 33 16 30 citations h-index g-index papers 34 34 34 21080 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution, 2006, 23, 254-267.	3.5	7,402
2	<scp>popart</scp> : fullâ€feature software for haplotype network construction. Methods in Ecology and Evolution, 2015, 6, 1110-1116.	2.2	4,199
3	Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks. Molecular Biology and Evolution, 2003, 21, 255-265.	3.5	1,675
4	Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. Molecular Biology and Evolution, 2012, 29, 1917-1932.	3.5	828
5	Endosymbiotic origin and differential loss of eukaryotic genes. Nature, 2015, 524, 427-432.	13.7	251
6	Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature, 2015, 517, 77-80.	13.7	238
7	A classification of consensus methods for phylogenetics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2003, , 163-183.	0.0	173
8	Investigating the Global Dispersal of Chickens in Prehistory Using Ancient Mitochondrial DNA Signatures. PLoS ONE, 2012, 7, e39171.	1.1	111
9	Continuous and tractable models for the variation of evolutionary rates. Mathematical Biosciences, 2006, 199, 216-233.	0.9	52
10	Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evolutionary Biology, 2009, 9, 111.	3.2	47
11	Flexible methods for estimating genetic distances from single nucleotide polymorphisms. Methods in Ecology and Evolution, 2015, 6, 938-948.	2.2	38
12	Can We "Future-Proof―Consensus Trees?â€. Systematic Biology, 2017, 66, 611-619.	2.7	30
13	How disturbance and dispersal influence intraspecific structure. Journal of Ecology, 2018, 106, 1298-1306.	1.9	24
14	Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments. Systematic Biology, 2015, 64, 741-751.	2.7	21
15	Bayesian Inference of Species Trees using Diffusion Models. Systematic Biology, 2021, 70, 145-161.	2.7	21
16	Hyperconvexity and tight-span theory for diversities. Advances in Mathematics, 2012, 231, 3172-3198.	0.5	19
17	The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nature Communications, 2018, 9, 4258.	5.8	16
18	The probability of monophyly of a sample of gene lineages on a species tree. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8002-8009.	3.3	15

#	Article	IF	CITATIONS
19	Hunting for Trees in Binary Character Sets: Efficient Algorithms for Extraction, Enumeration, and Optimization. Journal of Computational Biology, 1996, 3, 275-288.	0.8	14
20	Efficient Recycled Algorithms for Quantitative Trait Models on Phylogenies. Genome Biology and Evolution, 2016, 8, 1338-1350.	1.1	13
21	A Universal Separable Diversity. Analysis and Geometry in Metric Spaces, 2017, 5, 138-151.	0.2	6
22	${\it Microbial Phylogenetic Context Using Phylogenetic Outlines. Genome Biology and Evolution, 2021, 13, .}$	1.1	6
23	Statistical flaws undermine pre-Columbian chicken debate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3584.	3.3	5
24	V-Spline: An Adaptive Smoothing Spline for Trajectory Reconstruction. Sensors, 2021, 21, 3215.	2.1	5
25	Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication. Genome Biology and Evolution, 2018, 10, 1198-1209.	1.1	4
26	Discrete coalescent trees. Journal of Mathematical Biology, 2021, 83, 60.	0.8	4
27	Constant Distortion Embeddings of Symmetric Diversities. Analysis and Geometry in Metric Spaces, 2016, 4, .	0.2	3
28	The link between segregation and phylogenetic diversity. Journal of Mathematical Biology, 2012, 64, 149-162.	0.8	2
29	An \$\$O(n log n)\$\$ Time Algorithm for Computing the Path-Length Distance Between Trees. Algorithmica, 2019, 81, 3692-3706.	1.0	1
30	Negative-Type Diversities, a Multi-dimensional Analogue of Negative-Type Metrics. Journal of Geometric Analysis, 2021, 31, 1703-1720.	0.5	1
31	FRAÃSSÉ LIMITS FOR RELATIONAL METRIC STRUCTURES. Journal of Symbolic Logic, 0, , 1-22.	0.4	1
32	â€~Bureaucratic' set systems, and their role in phylogenetics. Applied Mathematics Letters, 2012, 25, 1148-1152.	1.5	0
33	Forty Years of Model-Based Phylogeography. Computational Biology, 2013, , 17-28.	0.1	O