Vijay M Pawar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8121044/publications.pdf

Version: 2024-02-01

840776 752698 33 558 11 20 citations h-index g-index papers 33 33 33 750 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interaction with co-located haptic feedback in virtual reality. Virtual Reality, 2006, 10, 24-30.	6.1	76
2	Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling. Journal of Neuroscience, 2018, 38, 2385-2397.	3.6	65
3	A Continuum Robot and Control Interface for Surgical Assist in Fetoscopic Interventions. IEEE Robotics and Automation Letters, 2017, 2, 1656-1663.	5.1	43
4	The effect of salient stimuli on neural oscillations, isometric force, and their coupling. NeuroImage, 2019, 198, 221-230.	4.2	39
5	Adjoint Transformation Algorithm for Hand–Eye Calibration with Applications in Robotic Assisted Surgery. Annals of Biomedical Engineering, 2018, 46, 1606-1620.	2.5	33
6	Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object. , $2016, , .$		30
7	Expertâ€level automated malaria diagnosis on routine blood films with deep neural networks. American Journal of Hematology, 2020, 95, 883-891.	4.1	30
8	Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nature Communications, 2020, 11, 1043.	12.8	29
9	In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 183-189.	3.3	28
10	Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy. Biomedical Optics Express, 2020, 11, 215.	2.9	22
11	Three-dimensional behavioural phenotyping of freely moving C. elegans using quantitative light field microscopy. PLoS ONE, 2018, 13, e0200108.	2.5	20
12	Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa. Scientific Reports, 2020, 10, 15918.	3.3	16
13	Chromaticity based smoke removal in endoscopic images. Proceedings of SPIE, 2017, , .	0.8	14
14	Determining the biomechanics of touch sensation in C. elegans. Scientific Reports, 2017, 7, 12329.	3.3	14
15	Toward autonomous architecture: The convergence of digital design, robotics, and the built environment. Science Robotics, 2017, 2, .	17.6	12
16	YouWasps: Towards Autonomous Multi-Robot Mobile Deposition for Construction., 2019,,.		12
17	MAP - A Mobile Agile Printer Robot for on-site Construction. , 2018, , .		11
18	Evaluating the Influence of Haptic Force-Feedback on 3D Selection Tasks using Natural Egocentric Gestures., 2009,,.		10

#	Article	IF	CITATIONS
19	CHESSâ€"Calibrating the Hand-Eye Matrix With Screw Constraints and Synchronization. IEEE Robotics and Automation Letters, 2018, 3, 2000-2007.	5.1	10
20	UAV Path Planning System Based on 3D Informed RRT* for Dynamic Obstacle Avoidance. , 2018, , .		10
21	Nano-mechanical single-cell sensing of cell–matrix contacts. Nanoscale, 2016, 8, 18105-18112.	5. 6	7
22	Profiling the behaviour of 3D selection tasks on movement time when using natural haptic pointing gestures. , 2009, , .		6
23	Investigation of mechanosensation in C elegans using light field calcium imaging. Biomedical Optics Express, 2016, 7, 2877.	2.9	6
24	A Weakly Supervised Deep Learning Approach for Detecting Malaria and Sickle Cells in Blood Films. Lecture Notes in Computer Science, 2020, , 226-235.	1.3	5
25	Docking Haptics: Extending the Reach of Haptics by Dynamic Combinations of Grounded and Worn Devices. , 2020, , .		4
26	Poster: The effect of target size and force feedback on 3D selection within a co-located visual-haptic immersive virtual environment. , 2013 , , .		1
27	Ambient fields: representing potential sensory information. , 2016, , .		1
28	Docking Haptics: Dynamic Combinations Of Grounded And Worn Devices. , 2020, , .		1
29	Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures. Nanoscale Advances, 2021, 3, 6403-6414.	4.6	1
30	Exploring Effects of Information Filtering With a VR Interface for Multi-Robot Supervision. Frontiers in Robotics and Al, 2021, 8, 692180.	3.2	1
31	Whole-Sample Mapping of Cancerous and Benign Tissue Properties. Lecture Notes in Computer Science, 2019, , 760-768.	1.3	1
32	Efficient Environment Guided Approach for Exploration of Complex Environments. , 2019, , .		0
33	Atomic force stiffness imaging: capturing differences in mechanical properties to identify and localize areas of prostate cancer tissue., 2018,,.		O