Götz S Uhrig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8119852/publications.pdf

Version: 2024-02-01

168 papers 5,181 citations

38 h-index 106344 65 g-index

176 all docs

176 docs citations

176 times ranked

3079 citing authors

#	Article	IF	Citations
1	Charge dynamics in magnetically disordered Mott insulators. Physical Review B, 2022, 105, .	3.2	1
2	Nuclear magnetic resonance spectroscopy of nonequilibrium steady states in quantum dots. Europhysics Letters, 2021, 133, 57003.	2.0	4
3	Resonant spin amplification in Faraday geometry. Physical Review B, 2021, 103, .	3.2	1
4	The 2021 Magnonics Roadmap. Journal of Physics Condensed Matter, 2021, 33, 413001.	1.8	287
5	Lattice-driven femtosecond magnon dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi><mml:mtext>â^'</mml:mtext><mr .<="" 104,="" 2021,="" b,="" physical="" review="" td=""><td>nl:ໝ່2 MnT</td><td>Temi><</td></mr></mml:math>	nl:ໝ ່ 2 MnT	Te mi><
6	Magnetic blue shift of Mott gaps enhanced by double exchange. Physical Review Research, 2021, 3, .	3.6	5
7	Femtosecond phononic coupling to both spins and charges in a room-temperature antiferromagnetic semiconductor. Physical Review B, 2021, 104, .	3.2	10
8	Dynamic mean-field theory for dense spin systems at infinite temperature. Physical Review Research, 2021, 3, .	3.6	4
9	Probing thermalization in quenched integrable and nonintegrable Fermi-Hubbard models. Physical Review A, 2020, 102, .	2.5	2
10	Interplay of spin mode locking and nuclei-induced frequency focusing in quantum dots. Physical Review B, 2020, 102, .	3.2	8
11	Topological superconductivity induced by a triple- $\$ + $\$	3.2	17
12	Tunable Signal Velocity in the Integer Quantum Hall Effect of Tailored Graphene. Journal of the Physical Society of Japan, 2020, 89, 054705.	1.6	1
13	Exchange-mediated magnetic blue-shift of the band-gap energy in the antiferromagnetic semiconductor MnTe. New Journal of Physics, 2020, 22, 083029.	2.9	15
14	Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nature Communications, 2020, 11, 287.	12.8	58
15	Topological magnetic excitations. Europhysics Letters, 2020, 132, 20003.	2.0	25
16	Quantum coherence from commensurate driving with laser pulses and decay. SciPost Physics, 2020, 8,	4.9	5
17	Delocalization of edge states in topological phases. Europhysics Letters, 2019, 127, 27001.	2.0	8
18	Time-crystalline behavior in an engineered spin chain. Physical Review B, 2019, 100, .	3.2	6

#	Article	IF	Citations
19	Topological magnon bands for magnonics. Physical Review B, 2019, 99, .	3.2	26
20	Positivity of the Spectral Densities of Retarded Floquet Green Functions. Physical Review Letters, 2019, 122, 130604.	7.8	13
21	Spin inertia and polarization recovery in quantum dots: Role of pumping strength and resonant spin amplification. Physical Review Research, 2019, 1, .	3.6	10
22	Absence of localized edge modes in spite of a non-trivial Zak phase in BiCu2PO6. Physical Review Research, 2019, 1, .	3.6	5
23	Quantum mechanical treatment of large spin baths. Physical Review B, 2018, 97, .	3.2	7
24	Magnetic field dependence of the electron spin revival amplitude in periodically pulsed quantum dots. Physical Review B, $2018, 98, .$	3.2	17
25	Strong quenches in the one-dimensional Fermi-Hubbard model. Physical Review A, 2018, 98, .	2.5	4
26	Emergence of Floquet behavior for lattice fermions driven by light pulses. Physical Review B, 2018, 98, .	3.2	13
27	Nuclear frequency focusing in periodically pulsed semiconductor quantum dots described by infinite classical central spin models. Physical Review B, 2018, 98, .	3.2	13
28	Mutually attracting spin waves in the square-lattice quantum antiferromagnet. SciPost Physics, 2018 , 4 , .	4.9	37
29	Singlet exciton condensation and bond-order-wave phase in the extended Hubbard model. Physical Review B, 2017, 96, .	3.2	6
30	Effects of interactions on dynamic correlations of hard-core bosons at finite temperatures. Physical Review B, 2017, 96, .	3.2	1
31	Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots. Physical Review B, 2017, 96, .	3.2	18
32	Efficient algorithms for the dynamics of large and infinite classical central spin models. Physical Review B, 2017, 96, .	3.2	12
33	Massive spinons in S=1/2 spin chains: Spinon-pair operator representation. Physical Review B, 2017, 95, .	3.2	3
34	Tunable edge states and their robustness towards disorder. Physical Review B, 2017, 95, .	3.2	29
35	Comparison of the iterated equation of motion approach and the density matrix formalism for the quantum Rabi model. European Physical Journal B, 2017, 90, 1.	1.5	6
36	Tunable dispersion of the edge states in the integer quantum Hall effect. SciPost Physics, 2017, 3, .	4.9	4

#	Article	IF	Citations
37	Persisting correlations of a central spin coupled to large spin baths. Physical Review B, 2016, 94, .	3.2	13
38	Increased coherence time in narrowed bath states in quantum dots. Physical Review B, 2016, 94, .	3.2	7
39	Coupling of Higgs and Leggett modes in non-equilibrium superconductors. Nature Communications, 2016, 7, 11921.	12.8	79
40	Topologically nontrivial Hofstadter bands on the kagome lattice. Physical Review A, 2016, 93, .	2.5	5
41	Orientational bond and NÃ \otimes el order in the two-dimensional ionic Hubbard model. Physical Review B, 2016, 93, .	3.2	11
42	Tunable and direction-dependent group velocities in topologically protected edge states. Physical Review B, 2016, 93, .	3.2	6
43	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo>===Chain compound<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaCu</mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:msub><mml:mi><mml:mi><mml:mi><mml:msub><mml:mi></mml:mi></mml:msub></mml:mi><mml:msub><mml:mi></mml:mi></mml:msub></mml:mi><mml:msub><mml:mi></mml:mi></mml:msub><mml:msub><mml:mi></mml:mi></mml:msub><mml:mi><mml:msub><mml:mi></mml:mi></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:mi></mml:mrow></mml:math></mml:mrow>		
44	mathvariant="normal">O<. Physical Review B, 2016, 93, . Minimal model for the frustrated spin ladder systemBiCu2PO6. Physical Review B, 2016, 94, .	3.2	8
45	Time-dependent correlations in quantum magnets at finite temperature. Physical Review B, 2016, 94, .	3.2	4
46	Quantum model for mode locking in pulsed semiconductor quantum dots. Physical Review B, 2016, 94, .	3.2	20
47	Effective models for Anderson impurity and Kondo problems from continuous unitary transformations. Physical Review B, 2015, 91, .	3.2	8
48	Low-temperature thermodynamics of multiflavored hardcore bosons by the BrÃ1/4ckner approach. Physical Review B, 2015, 92, .	3.2	6
49	Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets. Physical Review Letters, 2015, 115, 207202.	7.8	38
50	From gapped excitons to gapless triplons in one dimension. European Physical Journal B, 2015, 88, 1.	1.5	6
51	Effective one-dimensional models from matrix product states. European Physical Journal B, 2015, 88, 1.	1.5	4
52	Anomalous behavior of control pulses in presence of noise with singular autocorrelation. Journal of Magnetic Resonance, 2014, 245, 133-142.	2.1	2
53	From quantum-mechanical to classical dynamics in the central-spin model. Physical Review B, 2014, 90, .	3.2	29
54	Signatures of nonadiabatic BCS state dynamics in pump-probe conductivity. Physical Review B, 2014, 90,	3.2	49

#	Article	IF	Citations
55	Interaction quenches in the two-dimensional fermionic Hubbard model. Physical Review B, 2014, 89, .	3.2	22
56	Conservation laws protect dynamic spin correlations from decay: Limited role of integrability in the central spin model. Physical Review B, 2014, 90, .	3.2	23
57	Finite-temperature line shapes of hard-core bosons in quantum magnets: A diagrammatic approach tested in one dimension. Physical Review B, 2014, 90, .	3.2	11
58	Dispersive excitations in one-dimensional ionic Hubbard model. Physical Review B, 2014, 89, .	3.2	14
59	Varied perturbation theory for the dispersion dip in the two-dimensional Heisenberg quantum antiferromagnet. European Physical Journal B, 2013, 86, 1.	1.5	7
60	Dynamics and decoherence in the central spin model in the low-field limit. Physical Review B, 2013, 88, .	3.2	41
61	Multiparticle spectral properties in the transverse field Ising model by continuous unitary transformations. Physical Review B, 2013, 87, .	3.2	10
62	Dynamical transition in interaction quenches of the one-dimensional Hubbard model. Physical Review B, 2013, 87, .	3.2	28
63	One-dimensional fermionic systems after interaction quenches and their description by bosonic field theories. New Journal of Physics, 2013, 15, 073012.	2.9	15
64	PERFECT STATE TRANSFER IN XX CHAINS INDUCED BY BOUNDARY MAGNETIC FIELDS. International Journal of Quantum Information, 2012, 10, 1250029.	1.1	18
65	Frequency-modulated pulses for quantum bits coupled to time-dependent baths. Physical Review A, 2012, 85, .	2.5	11
66	Enhanced perturbative continuous unitary transformations. Physical Review B, 2012, 86, .	3.2	32
67	Effects of ring exchange interaction on the NÃ $^\odot$ el phase of two-dimensional, spatially anisotropic, frustrated Heisenberg quantum antiferromagnet. Physical Review B, 2012, 85, .	3.2	20
68	Three-dimensional generalization of the J1-J2Heisenberg model on a square lattice and role of the interlayer coupling. Physical Review B, 2011, 83, .	3.2	24
69	Self-consistent spin-wave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides. Physical Review B, 2011, 84, .	3.2	43
70	Truncation errors in self-similar continuous unitary transformations. European Physical Journal B, 2011, 79, 225-240.	1.5	6
71	Hole dispersions for antiferromagnetic spin-hbox $\{\frac{1}{2}\}\$ 12 two-leg ladders by self-similar continuous unitary transformations. European Physical Journal B, 2011, 84, 475-490.	1.5	5
72	Exact results on dynamical decoupling by π pulses in quantum information processes. New Journal of Physics, 2011, 13, 059504.	2.9	7

#	Article	IF	CITATIONS
73	Microscopic model for Bose-Einstein condensation and quasiparticle decay. Europhysics Letters, 2011, 96, 47001.	2.0	17
74	Rigorous performance bounds for quadratic and nested dynamical decoupling. Physical Review A, 2011, 84, .	2.5	5
75	Symmetry-enhanced performance of dynamical decoupling. Physical Review A, 2011, 84, .	2.5	1
76	Kinks in the electronic dispersion of the Hubbard model away from half filling. Physical Review B, 2011 , 84 , .	3.2	14
77	High-order coherent control sequences of finite-width pulses. Europhysics Letters, 2011, 96, 10003.	2.0	15
78	Optimized dynamical decoupling for time-dependent Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 132001.	2.1	16
79	Vertex corrections in the dynamic structure factor in spin ladders. Physical Review B, 2010, 82, .	3.2	8
80	Rigorous bounds for optimal dynamical decoupling. Physical Review A, 2010, 82, .	2.5	29
81	Optimized dynamical decoupling for power-law noise spectra. Physical Review A, 2010, 81, .	2.5	67
82	Derivation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>J</mml:mi>/mml:mi>display="inline"><mml:mtext>a^'</mml:mtext><mml:mi>J</mml:mi>JJ<td>nrow.2<td>ml:math>mod</td></td></mml:mrow></mml:math>	nro w.2 <td>ml:math>mod</td>	ml:math>mod
83	Field-Induced Tomonaga-Luttinger Liquid Phase of a Two-Leg Spin-1/2 Ladder with Strong Leg Interactions. Physical Review Letters, 2010, 105, 137207.	7.8	92
84	Efficient coherent control by sequences of pulses of finite duration. New Journal of Physics, 2010, 12, 045001.	2.9	34
85	Adapted continuous unitary transformation to treat systems with quasi-particles of finite lifetime. New Journal of Physics, 2010, 12, 033048.	2.9	39
86	Pnictides as frustrated quantum antiferromagnets close to a quantum phase transition. Physical Review B, 2009, 79, .	3.2	63
87	Spin-wave velocities, density of magnetic excitations, and NMR relaxation in iron pnictides. Physical Review B, 2009, 80, .	3.2	16
88	Concatenated Control Sequences Based on Optimized Dynamic Decoupling. Physical Review Letters, 2009, 102, 120502.	7.8	79
89	Neutron scattering evidence for isolated spin-12ladders in(C5D12N)2CuBr4. Physical Review B, 2009, 80,	3.2	31
90	Optimized pulses for the perturbative decoupling of a spin and a decoherence bath. Physical Review A, 2009, 80, .	2.5	17

#	Article	IF	Citations
91	Emergent Collective Modes and Kinks in Electronic Dispersions. Physical Review Letters, 2009, 102, 076406.	7.8	30
92	Generic susceptibilities of the half-filled Hubbard model in infinite dimensions. Physical Review B, 2009, 79, .	3.2	13
93	Interaction quenches of Fermi gases. Physical Review A, 2009, 80, .	2.5	42
94	Exact results on dynamical decoupling by π pulses in quantum information processes. New Journal of Physics, 2008, 10, 083024.	2.9	128
95	Collective orbital excitations in orbitally ordered YVO ₃ and HoVO ₃ . New Journal of Physics, 2008, 10, 053027.	2.9	23
96	Optimization of short coherent control pulses. Physical Review A, 2008, 77, .	2.5	48
97	Single-particle dynamics in the vicinity of the Mott-Hubbard metal-to-insulator transition. Physical Review B, 2008, 77, .	3.2	48
98	Numerical analysis of optimized coherent control pulses. Physical Review A, 2008, 78, .	2.5	15
99	Generalization of short coherent control pulses: extension to arbitrary rotations. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 312005.	2.1	18
100	Fate of orbitons coupled to phonons. Physical Review B, 2007, 76, .	3.2	10
101	Keeping a Quantum Bit Alive by Optimizedπ-Pulse Sequences. Physical Review Letters, 2007, 98, 100504.	7.8	548
102	One- and Two-Triplon Spectra of a Cuprate Ladder. Physical Review Letters, 2007, 98, 027403.	7.8	106
103	Two dimensionality of magnetic excitations on the trellis lattice:(La,Sr,Ca)14Cu24O41andSrCu2O3. Physical Review B, 2007, 75, .	3.2	3
104	Thermodynamics of adiabatically loaded cold bosons in the Mott insulating phase of one-dimensional optical lattices. European Physical Journal D, 2006, 38, 343-352.	1.3	10
105	Neutron scattering from a coordination polymer quantum paramagnet. Physical Review B, 2006, 74, .	3.2	21
106	Hard-core magnons in the S=1 â • 2 Heisenberg model on the square lattice. Physical Review B, 2006, 73, .	3.2	4
107	Spectral densities from dynamic density-matrix renormalization. European Physical Journal B, 2005, 45, 293-303.	1.5	31
108	Magnetic Excitations in Bilayer High-Temperature Superconductors with Stripe Correlations. Journal of the Physical Society of Japan, 2005, 74, 86-97.	1.6	15

#	Article	IF	CITATIONS
109	Electron spectra close to a metal-to-insulator transition. Physical Review B, 2005, 72, .	3.2	54
110	Temperature in one-dimensional bosonic Mott insulators. Physical Review A, 2005, 72, .	2.5	27
111	Zero-Field Incommensurate Spin-Peierls Phase with Interchain Frustration in TiOCl. Physical Review Letters, 2005, 95, 097203.	7.8	66
112	SPECTRAL PROPERTIES OF MAGNETIC EXCITATIONS IN CUPRATE TWO-LEG LADDER SYSTEMS. Modern Physics Letters B, 2005, 19, 1179-1205.	1.9	69
113	Dynamic Structure Factor of the Two-Dimensional Shastry-Sutherland Model. Physical Review Letters, 2004, 92, 027204.	7.8	40
114	Systematic mapping of the Hubbard model to the generalizedtâ^'Jmodel. Physical Review B, 2004, 70, .	3.2	42
115	Thermodynamics of a spin-12chain coupled to Einstein phonons. Physical Review B, 2004, 70, .	3.2	2
116	Unifying Magnons and Triplons in Stripe-Ordered Cuprate Superconductors. Physical Review Letters, 2004, 93, 267003.	7.8	96
117	Spectral properties of the dimerized and frustratedS=1/2chain. Physical Review B, 2004, 69, .	3.2	33
118	High-energy dynamics of the single-impurity Anderson model. Physical Review B, 2004, 69, .	3.2	38
119	The quartic oscillator: a non-perturbative study by continuous unitary transformations. Journal of Physics A, 2004, 37, 9275-9294.	1.6	30
120	High order perturbation theory for spectral densities of multi-particle excitations: $\frac{1}{2}$ two-leg Heisenberg ladder. European Physical Journal B, 2003, 36, 525-544.	1.5	45
121	Rung-singlet phase of theS=12two-leg spin-ladder with four-spin cyclic exchange. Physical Review B, 2003, 67, .	3.2	28
122	Evidence for a large magnetic heat current in insulating layered cuprates. Physical Review B, 2003, 67, .	3.2	40
123	Excitations in One-DimensionalS=12Quantum Antiferromagnets. Physical Review Letters, 2003, 90, 227204.	7.8	98
124	Thermodynamic properties of spin ladders with cyclic exchange. Physical Review B, 2003, 67, .	3.2	5
125	Charge-Order-Induced Sharp Raman Peak inSr14Cu24O41. Physical Review Letters, 2003, 90, 167201.	7.8	17
126	Landau's Quasiparticle Mapping: Fermi Liquid Approach and Luttinger Liquid Behavior. Physical Review Letters, 2002, 88, 146401.	7.8	13

#	Article	IF	Citations
127	Spin-phonon chains with bond coupling. Physical Review B, 2002, 65, .	3.2	20
128	Multi-particle excitations and spectral densities in quantum spin-systems. Physica B: Condensed Matter, 2002, 312-313, 527-528.	2.7	6
129	Magnetic excitations in two-leg spin 1/2 ladders: experiment and theory. Journal of Physics and Chemistry of Solids, 2002, 63, 2167-2173.	4.0	13
130	Evidence for spin–charge separation in quasi-one-dimensional organic conductors. Nature, 2002, 418, 614-617.	27.8	100
131	SrCu2(BO3)2 — a two-dimensional spin liquid. Canadian Journal of Physics, 2001, 79, 1565-1571.	1.1	0
132	Raman response in antiferromagnetic two-leg S = $1/2$ Heisenberg ladders. Europhysics Letters, 2001, 56, 877-883.	2.0	53
133	Strong Damping of Phononic Heat Current by Magnetic Excitations inSrCu2(BO3)2. Physical Review Letters, 2001, 87, 047202.	7.8	64
134	Thermodynamic properties of the dimerized and frustratedS=1/2chain. Physical Review B, 2001, 64, .	3.2	22
135	Magnetic properties of(VO)2P2O7: Two-plane structure and spin-phonon interactions. Physical Review B, 2001, 63, .	3.2	21
136	Triplet dispersion inCuGeO3:Perturbative analysis. Physical Review B, 2001, 63, .	3.2	7
137	Observation of Two-Magnon Bound States in the Two-Leg Ladders of (Ca,La)14Cu24O41. Physical Review Letters, 2001, 87, 127002.	7.8	93
138	Fractional and Integer Excitations in Quantum Antiferromagnetic Spin1/2Ladders. Physical Review Letters, 2001, 87, 167204.	7.8	85
139	Ordered phases in spin-Peierls systems. Physica B: Condensed Matter, 2000, 280, 308-312.	2.7	4
140	Dispersion and Symmetry of Bound States in the Shastry-Sutherland Model. Physical Review Letters, 2000, 85, 3958-3961.	7.8	124
141	Exact Demonstration of Magnetization Plateaus and First-Order Dimer-Néel Phase Transitions in a Modified Shastry-Sutherland Model forSrCu2(BO3)2. Physical Review Letters, 2000, 84, 1808-1811.	7.8	93
142	Symmetries and triplet dispersion in a modified Shastry-Sutherland model for SrCu2(BO3)2. Journal of Physics Condensed Matter, 2000, 12, 9069-9083.	1.8	13
143	Nachruf auf Heinzâ€jù⁄4rgen Schulz. Physik Journal, 1999, 55, 58-58.	0.1	0
144	Soliton lattices in the incommensurate spin-Peierls phase: Local distortions and magnetizations. Physical Review B, 1999, 60, 9468-9476.	3.2	19

#	Article	IF	Citations
145	Comment on "Robustness of a Local Fermi Liquid against Ferromagnetism and Phase Separation― Physical Review Letters, 1999, 83, 2865-2865.	7.8	2
146	Modulated phases in spin-Peierls systems. , 1999, , 291-300.		2
147	Dopant-bound spinons in Cu 1 â^' x Zn x GeO 3. Europhysics Letters, 1998, 43, 463-468.	2.0	16
148	A magnetic model for the incommensurate I phase of spin-Peierls systems. Europhysics Letters, 1998, 41, 431-436.	2.0	19
149	Magnetic properties of (VO)2P2O7 from frustrated interchain coupling. Physical Review B, 1998, 58, R14705-R14708.	3.2	35
150	Nonadiabatic approach to spin-Peierls transitions via flow equations. Physical Review B, 1998, 57, R14004-R14007.	3.2	77
151	Berry's Phase for Large Spins in External Fields. Physical Review Letters, 1998, 80, 1304-1307.	7.8	8
152	Lattice dependence of saturated ferromagnetism in the Hubbard model. Physical Review B, 1997, 56, 13960-13982.	3.2	71
153	Symmetry and Dimension of the Magnon Dispersion of Inorganic Spin-Peierls Systems. Physical Review Letters, 1997, 79, 163-166.	7.8	55
154	Observation of Three-Magnon Light Scattering inCuGeO3. Physical Review Letters, 1997, 79, 5138-5141.	7.8	26
155	Exact Single Spin Flip for the Hubbard Model ind=â^ž. Physical Review Letters, 1996, 77, 3629-3632.	7.8	19
156	Magnetic excitation spectrum of dimerized antiferromagnetic chains. Physical Review B, 1996, 54, R9624-R9627.	3.2	159
157	Conductivity in a symmetry-broken phase: Spinless fermions with 1/dcorrections. Physical Review B, 1996, 54, 10436-10451.	3.2	8
158	Zero and finite temperature phase diagram of the spinless fermion model in infinite dimensions. Annalen Der Physik, 1995, 507, 778-804.	2.4	11
159	Conductivity of interacting spinless fermion systems via the high-dimensional approach. Physica B: Condensed Matter, 1995, 206-207, 698-701.	2.7	1
160	Spin Waves in Quantum Antiferromagnets. Europhysics Letters, 1995, 31, 37-42.	2.0	6
161	Drude weight and dc conductivity of correlated electrons. Physical Review B, 1995, 52, 5617-5623.	3.2	11
162	1/d corrections for interacting spinless fermions: One-particle properties. European Physical Journal B, 1994, 94, 291-299.	1.5	17

#	Article	IF	Citations
163	Interacting spinless fermions with disorder: the Mott transition for infinite coordination number. Journal of Physics Condensed Matter, 1993, 5, 2561-2582.	1.8	10
164	Inhibition of phase separation and appearance of new phases for interacting spinless fermions. Physical Review Letters, 1993, 71, 271-274.	7.8	38
165	Anomalous effects in interacting spinless fermion systems with local disorder. Journal of Physics Condensed Matter, 1992, 4, 7773-7794.	1.8	13
166	Nonexistence of planar magnetic order in the one- and two-dimensional generalized Hubbard model at finite temperatures. Physical Review B, 1992, 45, 4738-4740.	3.2	17
167	Fermionic lattice models with internally competing symmetries: Nontrivial algebraic corrections in the Hartree-Fock ground-state energy. Physical Review B, 1992, 46, 9940-9945.	3.2	4
168	Optical Spectroscopy of Low-Dimensional Quantum Spin Systems. Advances in Solid State Physics, 0, , 95-112.	0.8	5