
Asif A Ghazanfar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8119716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is neocortex essentially multisensory?. Trends in Cognitive Sciences, 2006, 10, 278-285.	4.0	1,236
2	Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 2017, 93, 480-490.	3.8	953
3	Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 2012, 16, 114-121.	4.0	841
4	The Natural Statistics of Audiovisual Speech. PLoS Computational Biology, 2009, 5, e1000436.	1.5	512
5	Multisensory Integration of Dynamic Faces and Voices in Rhesus Monkey Auditory Cortex. Journal of Neuroscience, 2005, 25, 5004-5012.	1.7	497
6	Reconstructing the Engram: Simultaneous, Multisite, Many Single Neuron Recordings. Neuron, 1997, 18, 529-537.	3.8	372
7	Vocal-Tract Resonances as Indexical Cues in Rhesus Monkeys. Current Biology, 2007, 17, 425-430.	1.8	289
8	Coupled Oscillator Dynamics of Vocal Turn-Taking in Monkeys. Current Biology, 2013, 23, 2162-2168.	1.8	262
9	The emergence of multisensory systems through perceptual narrowing. Trends in Cognitive Sciences, 2009, 13, 470-478.	4.0	238
10	Facial expressions linked to monkey calls. Nature, 2003, 423, 937-938.	13.7	236
11	Interactions between the Superior Temporal Sulcus and Auditory Cortex Mediate Dynamic Face/Voice Integration in Rhesus Monkeys. Journal of Neuroscience, 2008, 28, 4457-4469.	1.7	210
12	Simultaneous encoding of tactile information by three primate cortical areas. Nature Neuroscience, 1998, 1, 621-630.	7.1	187
13	Cineradiography of Monkey Lip-Smacking Reveals Putative Precursors of Speech Dynamics. Current Biology, 2012, 22, 1176-1182.	1.8	179
14	Monkey vocal tracts are speech-ready. Science Advances, 2016, 2, e1600723.	4.7	172
15	Primate brains in the wild: the sensory bases for social interactions. Nature Reviews Neuroscience, 2004, 5, 603-616.	4.9	162
16	Monkeys Match the Number of Voices They Hear to the Number of Faces They See. Current Biology, 2005, 15, 1034-1038.	1.8	159
17	Multisensory Integration of Looming Signals by Rhesus Monkeys. Neuron, 2004, 43, 177-181.	3.8	143
18	The decline of cross-species intersensory perception in human infants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6771-6774.	3.3	138

#	Article	IF	CITATIONS
19	The Life of Behavior. Neuron, 2019, 104, 25-36.	3.8	129
20	Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18362-18366.	3.3	123
21	Nonlinear partial differential equations and applications: Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15755-15757.	3.3	118
22	Human-Monkey Gaze Correlations Reveal Convergent and Divergent Patterns of Movie Viewing. Current Biology, 2010, 20, 649-656.	1.8	116
23	Encoding of Tactile Stimulus Location by Somatosensory Thalamocortical Ensembles. Journal of Neuroscience, 2000, 20, 3761-3775.	1.7	115
24	Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys. Current Biology, 2017, 27, 1844-1852.e6.	1.8	114
25	Evolution of human vocal production. Current Biology, 2008, 18, R457-R460.	1.8	112
26	Integration of Bimodal Looming Signals through Neuronal Coherence in the Temporal Lobe. Current Biology, 2008, 18, 963-968.	1.8	112
27	Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150370.	1.8	100
28	The evolution of speech: vision, rhythm, cooperation. Trends in Cognitive Sciences, 2014, 18, 543-553.	4.0	90
29	Nonlinear Processing of Tactile Information in the Thalamocortical Loop. Journal of Neurophysiology, 1997, 78, 506-510.	0.9	88
30	Looming Biases in Monkey Auditory Cortex. Journal of Neuroscience, 2007, 27, 4093-4100.	1.7	84
31	Different Neural Frequency Bands Integrate Faces and Voices Differently in the Superior Temporal Sulcus. Journal of Neurophysiology, 2009, 101, 773-788.	0.9	83
32	Multisensory vocal communication in primates and the evolution of rhythmic speech. Behavioral Ecology and Sociobiology, 2013, 67, 1441-1448.	0.6	82
33	Hebb's Dream: The Resurgence of Cell Assemblies. Neuron, 1997, 19, 219-221.	3.8	80
34	Monkey lipsmacking develops like the human speech rhythm. Developmental Science, 2012, 15, 557-568.	1.3	79
35	Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1959-1963.	3.3	78
36	Cooperative vocal control in marmoset monkeys via vocal feedback. Journal of Neurophysiology, 2015, 114, 274-283.	0.9	78

#	Article	IF	CITATIONS
37	Facilitation of multisensory integration by the "unity effect" reveals that speech is special. Journal of Vision, 2008, 8, 14-14.	0.1	67
38	Dynamic, rhythmic facial expressions and the superior temporal sulcus of macaque monkeys: implications for the evolution of audiovisual speech. European Journal of Neuroscience, 2010, 31, 1807-1817.	1.2	66
39	The auditory behaviour of primates: a neuroethological perspective. Current Opinion in Neurobiology, 2001, 11, 712-720.	2.0	65
40	The Role of Temporal Cues in Rhesus Monkey Vocal Recognition: Orienting Asymmetries to Reversed Calls. Brain, Behavior and Evolution, 2001, 58, 163-172.	0.9	65
41	The autonomic nervous system is the engine for vocal development through social feedback. Current Opinion in Neurobiology, 2016, 40, 155-160.	2.0	64
42	Internal states and extrinsic factors both determine monkey vocal production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3978-3983.	3.3	64
43	Knowledgeable Lemurs Become More Central in Social Networks. Current Biology, 2018, 28, 1306-1310.e2.	1.8	63
44	Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons. Experimental Brain Research, 2001, 141, 88-100.	0.7	62
45	The units of perception in the antiphonal calling behavior of cotton-top tamarins (Saguinus oedipus) Tj ETQq1 1 Neural, and Behavioral Physiology, 2001, 187, 27-35.	0.784314 ı 0.7	rgBT /Overlo 61
46	Eye movements of monkey observers viewing vocalizing conspecifics. Cognition, 2006, 101, 515-529.	1.1	60
47	Arousal dynamics drive vocal production in marmoset monkeys. Journal of Neurophysiology, 2016, 116, 753-764.	0.9	58
48	The development of the uncanny valley in infants. Developmental Psychobiology, 2012, 54, 124-132.	0.9	57
49	Facial Expressions and the Evolution of the Speech Rhythm. Journal of Cognitive Neuroscience, 2014, 26, 1196-1207.	1.1	56
50	Temporal cues in the antiphonal long-calling behaviour of cottontop tamarins. Animal Behaviour, 2002, 64, 427-438.	0.8	53
51	Lemurs groom-at-a-distance through vocal networks. Animal Behaviour, 2015, 110, 179-186.	0.8	51
52	Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4668-77.	3.3	49
53	Monkeys and Humans Share a Common Computation for Face/Voice Integration. PLoS Computational Biology, 2011, 7, e1002165.	1.5	46
54	Facial Muscle Coordination in Monkeys during Rhythmic Facial Expressions and Ingestive Movements. Journal of Neuroscience, 2012, 32, 6105-6116.	1.7	46

#	Article	IF	CITATIONS
55	Perinatally Influenced Autonomic System Fluctuations Drive Infant Vocal Sequences. Current Biology, 2016, 26, 1249-1260.	1.8	43
56	A Hierarchy of Autonomous Systems for Vocal Production. Trends in Neurosciences, 2020, 43, 115-126.	4.2	43
57	Individual recognition through olfactory–auditory matching in lemurs. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140071.	1.2	39
58	Vocal state change through laryngeal development. Nature Communications, 2019, 10, 4592.	5.8	36
59	The Influence of Natural Scene Dynamics on Auditory Cortical Activity. Journal of Neuroscience, 2010, 30, 13919-13931.	1.7	35
60	Developmental Neuroscience: How Twitches Make Sense. Current Biology, 2014, 24, R971-R972.	1.8	35
61	Heterochrony and Cross-Species Intersensory Matching by Infant Vervet Monkeys. PLoS ONE, 2009, 4, e4302.	1.1	33
62	Convergent Evolution of Vocal Cooperation without Convergent Evolution of Brain Size. Brain, Behavior and Evolution, 2014, 84, 93-102.	0.9	33
63	Volition and learning in primate vocal behaviour. Animal Behaviour, 2019, 151, 239-247.	0.8	31
64	Language evolution: neural differences that make a difference. Nature Neuroscience, 2008, 11, 382-384.	7.1	29
65	The multisensory roles for auditory cortex in primate vocal communication. Hearing Research, 2009, 258, 113-120.	0.9	29
66	Vocal development through morphological computation. PLoS Biology, 2018, 16, e2003933.	2.6	29
67	Consistent individual variation across interaction networks indicates social personalities in lemurs. Animal Behaviour, 2018, 136, 217-226.	0.8	26
68	On the relationship between lateralized brain function and orienting asymmetries Behavioral Neuroscience, 2010, 124, 437-445.	0.6	25
69	The neurobiology of primate vocal communication. Current Opinion in Neurobiology, 2014, 28, 128-135.	2.0	25
70	Domestication Phenotype Linked to Vocal Behavior in Marmoset Monkeys. Current Biology, 2020, 30, 5026-5032.e3.	1.8	24
71	Vocal development in a Waddington landscape. ELife, 2017, 6, .	2.8	23
72	Paving the Way Forward: Integrating the Senses through Phase-Resetting of Cortical Oscillations. Neuron, 2007, 53, 162-164.	3.8	21

4

#	Article	IF	CITATIONS
73	Rhesus monkeys (Macaca mulatta) hear rising frequency sounds as looming Behavioral Neuroscience, 2009, 123, 822-827.	0.6	20
74	Neural correlates of perceptual narrowing in crossâ€species faceâ€voice matching. Developmental Science, 2012, 15, 830-839.	1.3	15
75	Vocal and locomotor coordination develops in association with the autonomic nervous system. ELife, 2019, 8, .	2.8	15
76	-specific responses to faces and objects in primate auditory cortex. Frontiers in Systems Neuroscience, 2008, 1, 2.	1.2	14
77	Language Evolution: Loquacious Monkey Brains?. Current Biology, 2006, 16, R879-R881.	1.8	12
78	Constraints and flexibility during vocal development: insights from marmoset monkeys. Current Opinion in Behavioral Sciences, 2018, 21, 27-32.	2.0	12
79	The Effects of Estradiol on Gonadotropin-Releasing Hormone Neurons in the Developing Mouse Brain. General and Comparative Endocrinology, 1998, 112, 356-363.	0.8	11
80	Multisensory Integration: Vision Boosts Information through Suppression in Auditory Cortex. Current Biology, 2010, 20, R22-R23.	1.8	11
81	Eye-gaze and arrow cues influence elementary sound perception. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1997-2004.	1.2	8
82	Response to Lieberman on "Monkey vocal tracts are speech-ready― Science Advances, 2017, 3, e1701859.	4.7	8
83	Cooperative care and the evolution of the prelinguistic vocal learning. Developmental Psychobiology, 2021, 63, 1583-1588.	0.9	8
84	A computational model for vocal exchange dynamics and their development in marmoset monkeys. , 2012, , .		6
85	Development of self-monitoring essential for vocal interactions in marmoset monkeys. , 2013, , .		6
86	Speech Production: How Does a Word Feel?. Current Biology, 2008, 18, R1142-R1144.	1.8	5
87	Statistical learning of social signals and its implications for the social brain hypothesis. Interaction Studies, 2011, 12, 397-417.	0.4	5
88	When what you see is not what you hear. Nature Neuroscience, 2011, 14, 675-676.	7.1	5
89	Paradoxical psychological functioning in early child development. , 2011, , 110-129.		4

90 The Default Mode of Primate Vocal Communication and Its Neural Correlates. , 2010, , 139-153.

#	Article	IF	CITATIONS
91	Multisensory Recognition in Vertebrates (Especially Primates). , 2013, , 3-27.		4
92	A mechanism for punctuating equilibria during mammalian vocal development. PLoS Computational Biology, 2022, 18, e1010173.	1.5	3
93	The Primate Frontal and Temporal Lobes and Their Role in Multisensory Vocal Communication. , 2010, , 500-524.		2
94	Evolving alternative neural pathways for vocal dexterity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
95	The Ontogeny and Phylogeny of Bimodal Primate Vocal Communication. , 2008, , 85-110.		1
96	Speech Perception: Linking Comprehension across a Cortical Network. Current Biology, 2007, 17, R420-R422.	1.8	0
97	Auditory Neuroscience: Recalibration of Space Perception Requires Cortical Feedback. Current Biology, 2010, 20, R282-R284.	1.8	0
98	Vocal communication is multi-sensorimotor coordination within and between individuals. Behavioral and Brain Sciences, 2014, 37, 572-573.	0.4	0
99	Ephemeral connections for reaching and grasping. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1143-1144.	3.3	0
100	The embodied nature of primate communication: some phylogenetic, ontogenetic & neurobiological evidence. FASEB Journal, 2009, 23, 185.4.	0.2	0
101	Unity of the Senses for Primate Vocal Communication. Frontiers in Neuroscience, 2011, , 653-666.	0.0	0
102	Unity of the Senses for Primate Vocal Communication. Frontiers in Neuroscience, 2011, , 653-666.	0.0	0
103	The Influence of Vision on Auditory Communication in Primates. Springer Handbook of Auditory Research, 2013, , 193-213.	0.3	0
104	Arousal elevation drives the development of oscillatory vocal output. Journal of Neurophysiology, 2022, 127, 1519-1531.	0.9	0