List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8119568/publications.pdf Version: 2024-02-01

SEONG-CIKIM

#	Article	IF	CITATIONS
1	Quantification of relative cerebral blood flow change by flowâ€sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magnetic Resonance in Medicine, 1995, 34, 293-301.	3.0	990
2	Magnetic field and tissue dependencies of human brain longitudinal1H2O relaxation in vivo. Magnetic Resonance in Medicine, 2007, 57, 308-318.	3.0	546
3	Motor Area Activity During Mental Rotation Studied by Time-Resolved Single-Trial fMRI. Journal of Cognitive Neuroscience, 2000, 12, 310-320.	2.3	461
4	Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1188-1206.	4.3	429
5	High-resolution mapping of iso-orientation columns by fMRI. Nature Neuroscience, 2000, 3, 164-169.	14.8	366
6	Effect of Basal Conditions on the Magnitude and Dynamics of the Blood Oxygenation Level-Dependent fMRI Response. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1042-1053.	4.3	338
7	Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects. Magnetic Resonance in Medicine, 2003, 49, 1019-1027.	3.0	331
8	Origin of Negative Blood Oxygenation Level—Dependent fMRI Signals. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 908-917.	4.3	329
9	Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magnetic Resonance in Medicine, 2003, 49, 655-664.	3.0	284
10	Diffusion-weighted spin-echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes. Magnetic Resonance in Medicine, 1999, 42, 919-928.	3.0	279
11	Functional magnetic resonance imaging of Broca's area during internal speech. NeuroReport, 1993, 4, 675-678.	1.2	263
12	Determination of relative CMRO2 from CBF and BOLD changes: Significant increase of oxygen consumption rate during visual stimulation. Magnetic Resonance in Medicine, 1999, 41, 1152-1161.	3.0	257
13	Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI. Magnetic Resonance in Medicine, 2001, 45, 791-800.	3.0	248
14	Functional MRI of calcium-dependent synaptic activity: Cross correlation with CBF and BOLD measurements. Magnetic Resonance in Medicine, 2000, 43, 383-392.	3.0	242
15	Reduction of signal fluctuation in functional MRI using navigator echoes. Magnetic Resonance in Medicine, 1994, 31, 495-503.	3.0	239
16	Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation. NeuroImage, 2006, 30, 1149-1160.	4.2	239
17	Perfusion imaging by a flow-sensitive alternating inversion recovery (Fair) technique: Application to functional brain imaging. Magnetic Resonance in Medicine, 1997, 37, 425-435.	3.0	238
18	MR imaging of the amideâ€proton transfer effect and the pHâ€insensitive nuclear overhauser effect at 9.4 T. Magnetic Resonance in Medicine, 2013, 69, 760-770.	3.0	238

#	Article	IF	CITATIONS
19	Limitations of temporal resolution in functional MRI. Magnetic Resonance in Medicine, 1997, 37, 631-636.	3.0	233
20	Simultaneous Blood Oxygenation Level-Dependent and Cerebral Blood Flow Functional Magnetic Resonance Imaging during Forepaw Stimulation in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 871-879.	4.3	230
21	Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR in Biomedicine, 1994, 7, 69-74.	2.8	218
22	Ultrahigh field magnetic resonance imaging and spectroscopy. Magnetic Resonance Imaging, 2003, 21, 1263-1281.	1.8	218
23	Comparison of blood oxygenattion and cerebral blood flow effect in fMRI: Estimation of relative oxygen consumption change. Magnetic Resonance in Medicine, 1997, 38, 59-65.	3.0	210
24	Time-resolved fMRI of mental rotation. NeuroReport, 1997, 8, 3697-3702.	1.2	189
25	Relationship between Neural, Vascular, and BOLD Signals in Isoflurane-Anesthetized Rat Somatosensory Cortex. Cerebral Cortex, 2006, 17, 942-950.	2.9	187
26	Multiscale Pattern Analysis of Orientation-Selective Activity in the Primary Visual Cortex. Journal of Neuroscience, 2010, 30, 325-330.	3.6	183
27	Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends in Cognitive Sciences, 1999, 3, 207-216.	7.8	182
28	Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response. Magnetic Resonance in Medicine, 2000, 44, 231-242.	3.0	181
29	Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1235-1247.	4.3	172
30	Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magnetic Resonance in Medicine, 2011, 65, 1448-1460.	3.0	169
31	Early Temporal Characteristics of Cerebral Blood Flow and Deoxyhemoglobin Changes during Somatosensory Stimulation. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 201-206.	4.3	157
32	Magnetic resonance imaging of the Amine–Proton EXchange (APEX) dependent contrast. NeuroImage, 2012, 59, 1218-1227.	4.2	150
33	High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magnetic Resonance in Medicine, 2002, 48, 589-593.	3.0	145
34	Functional mapping in the human brain using high magnetic fields. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1195-1213.	4.0	144
35	Doseâ€dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. European Journal of Neuroscience, 2009, 30, 242-250.	2.6	144
36	In Vivo Measurements of Brain Glucose Transport Using the Reversible Michaelis–Menten Model and Simultaneous Measurements of Cerebral Blood Flow Changes during Hypoglycemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 653-663.	4.3	140

#	Article	IF	CITATIONS
37	Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. NeuroImage, 2008, 43, 1-9.	4.2	138
38	Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRI. NeuroReport, 1997, 8, 1257-1261.	1.2	133
39	Mental Rotation Studied by Functional Magnetic Resonance Imaging at High Field (4 Tesla): Performance and Cortical Activation. Journal of Cognitive Neuroscience, 1997, 9, 419-432.	2.3	126
40	Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Human Brain Mapping, 1996, 4, 210-226.	3.6	123
41	Reproducibility of BOLD-based functional MRI obtained at 4 T. , 1999, 7, 267-283.		120
42	Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magnetic Resonance in Medicine, 2001, 45, 61-70.	3.0	119
43	Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T. Magnetic Resonance in Medicine, 2004, 51, 518-524.	3.0	118
44	Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR in Biomedicine, 2013, 26, 949-962.	2.8	114
45	A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Scientific Reports, 2016, 6, 27818.	3.3	113
46	Functional magnetic resonance imaging of mental rotation and memory scanning: a multidimensional scaling analysis of brain activation patterns1Published on the World Wide Web on 24 February 1998.1. Brain Research Reviews, 1998, 26, 106-112.	9.0	112
47	In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magnetic Resonance in Medicine, 2000, 43, 393-402.	3.0	111
48	Functional magnetic resonance imaging of the human brain. Journal of Neuroscience Methods, 1997, 74, 229-243.	2.5	110
49	Imaging blood flow in brain tumors using arterial spin labeling. Magnetic Resonance in Medicine, 2000, 44, 169-173.	3.0	109
50	Effects of the α ₂ â€adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. European Journal of Neuroscience, 2013, 37, 80-95.	2.6	109
51	Spatial relationship between neuronal activity and BOLD functional MRI. NeuroImage, 2004, 21, 876-885.	4.2	108
52	A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine, 2021, 27, 174-182.	30.7	108
53	Quantitative measurements of cerebral blood flow in rats using the FAIR technique: Correlation with previous lodoantipyrine autoradiographic studies. Magnetic Resonance in Medicine, 1998, 39, 564-573.	3.0	106
54	Temporal Dynamics and Spatial Specificity of Arterial and Venous Blood Volume Changes during Visual Stimulation: Implication for Bold Quantification. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1211-1222.	4.3	100

#	Article	IF	CITATIONS
55	Changes in Human Regional Cerebral Blood Flow and Cerebral Blood Volume during Visual Stimulation Measured by Positron Emission Tomography. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 608-612.	4.3	98
56	Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. NeuroImage, 2005, 27, 416-424.	4.2	95
57	Mapping Iso-Orientation Columns by Contrast Agent-Enhanced Functional Magnetic Resonance Imaging: Reproducibility, Specificity, and Evaluation by Optical Imaging of Intrinsic Signal. Journal of Neuroscience, 2006, 26, 11821-11832.	3.6	95
58	Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution. Journal of Neuroscience, 2007, 27, 6892-6902.	3.6	95
59	Multi-slice perfusion-based functional MRI using the FAIR technique: comparison of CBF and BOLD effects. NMR in Biomedicine, 1997, 10, 191-196.	2.8	92
60	The Effect of Stimulus–Response Compatibility on Cortical Motor Activation. Neurolmage, 2001, 13, 1-14.	4.2	91
61	Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. NeuroImage, 2004, 23, 613-624.	4.2	91
62	Mapping Brain Glucose Uptake with Chemical Exchange-Sensitive Spin-Lock Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1402-1410.	4.3	86
63	Fast interleaved echo-planar imaging with navigator: High resolution anatomic and functional images at 4 tesla. Magnetic Resonance in Medicine, 1996, 35, 895-902.	3.0	84
64	Magnetic Resonance Studies of Brain Function and Neurochemistry. Annual Review of Biomedical Engineering, 2000, 2, 633-660.	12.3	84
65	Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magnetic Resonance in Medicine, 1999, 42, 425-429.	3.0	83
66	Neural and Hemodynamic Responses Elicited by Forelimb- and Photo-stimulation in Channelrhodopsin-2 Mice: Insights into the Hemodynamic Point Spread Function. Cerebral Cortex, 2014, 24, 2908-2919.	2.9	82
67	Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4ÂT. NeuroImage, 2008, 40, 59-67.	4.2	80
68	Brain Switch for Reflex Micturition Control Detected by fMRI in Rats. Journal of Neurophysiology, 2009, 102, 2719-2730.	1.8	80
69	Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Scientific Reports, 2016, 6, 31464.	3.3	80
70	Review and consensus recommendations on clinical <scp>APT</scp> â€weighted imaging approaches at <scp>3T</scp> : Application to brain tumors. Magnetic Resonance in Medicine, 2022, 88, 546-574.	3.0	79
71	Changes in Cerebral Arterial, Tissue and Venous Oxygenation with Evoked Neural Stimulation: Implications for Hemoglobin-Based Functional Neuroimaging. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 428-439.	4.3	78
72	Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals. Magnetic Resonance in Medicine, 2005, 54, 333-342.	3.0	75

#	Article	IF	CITATIONS
73	MRI techniques to measure arterial and venous cerebral blood volume. NeuroImage, 2019, 187, 17-31.	4.2	75
74	The Challenge of Connecting the Dots in the B.R.A.I.N Neuron, 2013, 80, 270-274.	8.1	73
75	Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD. NeuroImage, 2007, 34, 1084-1092.	4.2	72
76	Effects of movement predictability on cortical motor activation. Neuroscience Research, 1998, 32, 65-74.	1.9	71
77	Sensitivity and Source of Amineâ€Proton Exchange and Amideâ€Proton Transfer Magnetic Resonance Imaging in Cerebral Ischemia. Magnetic Resonance in Medicine, 2014, 71, 118-132.	3.0	71
78	Inhibitory Neuron Activity Contributions to Hemodynamic Responses and Metabolic Load Examined Using an Inhibitory Optogenetic Mouse Model. Cerebral Cortex, 2018, 28, 4105-4119.	2.9	71
79	Perfusion imaging using dynamic arterial spin labeling (DASL). Magnetic Resonance in Medicine, 2001, 45, 1021-1029.	3.0	69
80	Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats. Neurolmage, 2010, 52, 224-233.	4.2	68
81	Neural and Hemodynamic Responses to Optogenetic and Sensory Stimulation in the Rat Somatosensory Cortex. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 922-932.	4.3	67
82	Layer-dependent functional connectivity methods. Progress in Neurobiology, 2021, 207, 101835.	5.7	67
83	Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. NeuroImage, 2018, 177, 30-44.	4.2	66
84	AccurateT1 determination from inversion recovery images: Application to human brain at 4 Tesla. Magnetic Resonance in Medicine, 1994, 31, 445-449.	3.0	65
85	Simultaneous oxygenation and perfbsion imaging study of functional activity in primary visual cortex at different visual stimulation frequency: Quantitative correlation between BOLD and CBF changes. Magnetic Resonance in Medicine, 1998, 40, 703-711.	3.0	65
86	Multicompartment analysis of blood flow and tissue perfusion employing D2O as a freely diffusible tracer: A novel deuterium NMR technique demonstrated via application with murine RIF-1 tumors. Magnetic Resonance in Medicine, 1988, 8, 410-426.	3.0	64
87	Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. NeuroImage, 2017, 157, 341-350.	4.2	64
88	Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4 T. Magnetic Resonance in Medicine, 2002, 47, 736-741.	3.0	62
89	Insights into new techniques for high resolution functional MRI. Current Opinion in Neurobiology, 2002, 12, 607-615.	4.2	61
90	Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb. Journal of Neuroscience, 2015, 35, 15263-15275.	3.6	61

#	Article	IF	CITATIONS
91	Increases in Oxygen Consumption without Cerebral Blood Volume Change during Visual Stimulation under Hypotension Condition. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1043-1051.	4.3	59
92	Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI. NeuroImage, 2010, 49, 1340-1349.	4.2	59
93	Functional magnetic resonance imaging of the retina. Investigative Ophthalmology and Visual Science, 2002, 43, 1176-81.	3.3	58
94	Vascular dynamics and BOLD fMRI: CBF level effects and analysis considerations. NeuroImage, 2006, 32, 1642-1655.	4.2	56
95	Advantages of chemical exchangeâ€sensitive spinâ€lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl– and amine–water proton exchange studies. NMR in Biomedicine, 2014, 27, 1313-1324.	2.8	56
96	High-resolution functional magnetic resonance imaging of the animal brain. Methods, 2003, 30, 28-41.	3.8	55
97	Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo twoâ€photon microscopy. Magnetic Resonance in Medicine, 2008, 59, 855-865.	3.0	55
98	Change of the cerebrospinal fluid volume during brain activation investigated by T1ï•weighted fMRI. NeuroImage, 2010, 51, 1378-1383.	4.2	51
99	Magic Angle–Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading. , 2014, 55, 5662.		51
100	Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magnetic Resonance in Medicine, 2006, 55, 1047-1057.	3.0	50
101	Trial-by-trial relationship between neural activity, oxygen consumption, and blood flow responses. Neurolmage, 2008, 40, 442-450.	4.2	48
102	Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. NeuroImage, 2019, 195, 203-214.	4.2	48
103	Functional Magnetic Resonance Imaging of Visual Object Construction and Shape Discrimination: Relations among Task, Hemispheric Lateralization, and Gender. Journal of Cognitive Neuroscience, 2001, 13, 72-89.	2.3	46
104	Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice. NeuroImage, 2021, 226, 117542.	4.2	46
105	Functional changes of apparent diffusion coefficient during visual stimulation investigated by diffusion-weighted gradient-echo fMRI. NeuroImage, 2008, 41, 801-812.	4.2	45
106	Sources of phase changes in BOLD and CBV-weighted fMRI. Magnetic Resonance in Medicine, 2007, 57, 520-527.	3.0	44
107	Chemical exchange saturation transfer imaging of phosphocreatine in the muscle. Magnetic Resonance in Medicine, 2019, 81, 3476-3487.	3.0	43
108	Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb. NeuroImage, 2014, 91, 237-251.	4.2	39

#	Article	IF	CITATIONS
109	Gradientâ€echo and spinâ€echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla. Magnetic Resonance in Medicine, 2019, 81, 1237-1246.	3.0	39
110	Quantification of regional blood flow by monitoring of exogenous tracer via nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 1990, 14, 266-282.	3.0	38
111	Spatial specificity of the enhanced dip inherently induced by prolonged oxygen consumption in cat visual cortex: Implication for columnar resolution functional MRI. NeuroImage, 2006, 30, 70-87.	4.2	38
112	Sources of functional apparent diffusion coefficient changes investigated by diffusion-weighted spin-echo fMRI. Magnetic Resonance in Medicine, 2006, 56, 1283-1292.	3.0	38
113	Compressed sensing fMRI using gradient-recalled echo and EPI sequences. NeuroImage, 2014, 92, 312-321.	4.2	38
114	Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI. Cerebral Cortex, 2021, 31, 4053-4067.	2.9	38
115	Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 627-640.	4.3	37
116	Chemical exchange–sensitive spinâ€lock (<scp>CESL) MRI</scp> of glucose and analogs in brain tumors. Magnetic Resonance in Medicine, 2018, 80, 488-495.	3.0	37
117	Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
118	Source of nonlinearity in echo-time-dependent BOLD fMRI. Magnetic Resonance in Medicine, 2006, 55, 1281-1290.	3.0	36
119	BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: Insights into the neural basis of fMRI. NeuroImage, 2011, 58, 82-90.	4.2	35
120	In Vivo Assessment of Aqueous Humor Dynamics Upon Chronic Ocular Hypertension and Hypotensive Drug Treatment Using Gadolinium-Enhanced MRI. , 2014, 55, 3747.		35
121	Glucose metabolism-weighted imaging with chemical exchange-sensitive MRI of 2-deoxyglucose (2DG) in brain: Sensitivity and biological sources. NeuroImage, 2016, 143, 82-90.	4.2	35
122	Functional MRI with magnetization transfer effects: Determination of BOLD and arterial blood volume changes. Magnetic Resonance in Medicine, 2008, 60, 1518-1523.	3.0	34
123	Top-down influence on the visual cortex of the blind during sensory substitution. NeuroImage, 2016, 125, 932-940.	4.2	34
124	Cerebral oxygen delivery and consumption during evoked neural activity. Frontiers in Neuroenergetics, 2010, 2, 11.	5.3	33
125	Characterization of non-hemodynamic functional signal measured by spin-lock fMRI. NeuroImage, 2013, 78, 385-395.	4.2	30
126	Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution. NeuroImage, 2013, 64, 91-103.	4.2	29

#	Article	IF	CITATIONS
127	Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology. NeuroImage, 2018, 169, 352-362.	4.2	29
128	Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl- <scp>d</scp> -glucose in normal and ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 869-880.	4.3	29
129	Dynamics of oxygen delivery and consumption during evoked neural stimulation using a compartment model and CBF and tissue PO2 measurements. NeuroImage, 2008, 42, 49-59.	4.2	27
130	Evolution of the Dynamic Changes in Functional Cerebral Oxidative Metabolism from Tissue Mitochondria to Blood Oxygen. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 745-758.	4.3	27
131	Contributions of dynamic venous blood volume versus oxygenation level changes to BOLD fMRI. NeuroImage, 2012, 60, 2238-2246.	4.2	27
132	In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. , 2015, 56, 3788.		27
133	Neurovascular Coupling under Chronic Stress Is Modified by Altered GABAergic Interneuron Activity. Journal of Neuroscience, 2019, 39, 10081-10095.	3.6	25
134	Dissection of brain-wide resting-state and functional somatosensory circuits by fMRI with optogenetic silencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
135	Quantitative chemical exchange sensitive MRI using irradiation with toggling inversion preparation. Magnetic Resonance in Medicine, 2012, 68, 1056-1064.	3.0	24
136	Functional MRI of human motor cortices during overt and imagined finger movements. International Journal of Imaging Systems and Technology, 1995, 6, 271-279.	4.1	23
137	Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Current Biology, 2022, 32, 2834-2847.e5.	3.9	22
138	Characterization of brain-wide somatosensory BOLD fMRI in mice under dexmedetomidine/isoflurane and ketamine/xylazine. Scientific Reports, 2021, 11, 13110.	3.3	21
139	Reply to "Can current fMRI techniques reveal the micro-architecture of cortex?― Nature Neuroscience, 2000, 3, 414-414.	14.8	20
140	Lessons from fMRI about Mapping Cortical Columns. Neuroscientist, 2008, 14, 287-299.	3.5	20
141	Excitation-Inhibition Imbalance Leads to Alteration of Neuronal Coherence and Neurovascular Coupling under Acute Stress. Journal of Neuroscience, 2020, 40, 9148-9162.	3.6	20
142	BOLD fMRI and hemodynamic responses to somatosensory stimulation in anesthetized mice: spontaneous breathing vs. mechanical ventilation. NMR in Biomedicine, 2020, 33, e4311.	2.8	20
143	Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR in Biomedicine, 2022, 35, .	2.8	19
144	A new T2*-weighting technique for magnetic resonance imaging. Magnetic Resonance in Medicine, 1993, 30, 512-517.	3.0	18

#	Article	IF	CITATIONS
145	Spatial dependence of CBV-fMRI: a comparison between VASO and contrast agent based methods. , 2006, 2006, 25-8.		18
146	Neuronal and Physiological Correlation to Hemodynamic Resting-State Fluctuations in Health and Disease. Brain Connectivity, 2014, 4, 727-740.	1.7	18
147	Biophysics of BOLD fMRI investigated with animal models. Journal of Magnetic Resonance, 2018, 292, 82-89.	2.1	18
148	Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors. Cell Reports, 2021, 34, 108780.	6.4	18
149	Quantitative MRI of Cerebral Arterial Blood Volume. Open Neuroimaging Journal, 2011, 5, 136-145.	0.2	18
150	Perfusion-based functional magnetic resonance imaging. Concepts in Magnetic Resonance, 2003, 16A, 16-27.	1.3	17
151	Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. NeuroImage, 2019, 197, 657-667.	4.2	17
152	Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI. Magnetic Resonance in Medicine, 2022, 87, 365-376.	3.0	17
153	Sensitivity and specificity of high-resolution balanced steady-state free precession fMRI at high field of 9.4T. NeuroImage, 2011, 58, 168-176.	4.2	16
154	Regional Cerebral Blood Flow and Arterial Blood Volume and Their Reactivity to Hypercapnia in Hypertensive and Normotensive Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 408-414.	4.3	16
155	Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. NeuroImage, 2019, 199, 718-729.	4.2	14
156	Surface coil cardiac tagging and31P spectroscopic localization with B1-insensitive adiabatic pulses. Magnetic Resonance in Medicine, 1994, 31, 541-545.	3.0	13
157	Chemicalâ€exchangeâ€sensitive MRI of amide, amine and NOE at 9.4ÂT versus 15.2ÂT. NMR in Biomedicine, 2013 30, e3740.	7, _{2.8}	13
158	Differential contribution of excitatory and inhibitory neurons in shaping neurovascular coupling in different epileptic neural states. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1145-1161.	4.3	13
159	Impact of sampling rate on statistical significance for single subject fMRI connectivity analysis. Human Brain Mapping, 2019, 40, 3321-3337.	3.6	12
160	Approximated analytical characterization of the steadyâ€state chemical exchange saturation transfer (CEST) signals. Magnetic Resonance in Medicine, 2019, 82, 1876-1889.	3.0	12
161	Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. NeuroImage, 2021, 241, 118435.	4.2	11
162	Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190623.	4.0	11

4

#	ARTICLE	IF	CITATIONS
163	Logarithmic transformation for high-field BOLD fMRI data. Experimental Brain Research, 2005, 165, 447-453.	1.5	10
164	Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T. Magnetic Resonance in Medicine, 2004, 51, 646-647.	3.0	9
165	Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turboâ€ÐASL): Application to functional studies. Magnetic Resonance in Medicine, 2012, 68, 762-771.	3.0	9
166	Postsynaptic activity of inhibitory neurons evokes hemodynamic fMRI responses. Neurolmage, 2021, 225, 117457.	4.2	9
167	Rapid threeâ€dimensional steadyâ€state chemical exchange saturation transfer magnetic resonance imaging. Magnetic Resonance in Medicine, 2021, 85, 1209-1221.	3.0	8
168	Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex. Brain Connectivity, 2016, 6, 596-606.	1.7	7
169	Model-Based Chemical Exchange Saturation Transfer MRI for Robust z-Spectrum Analysis. IEEE Transactions on Medical Imaging, 2020, 39, 283-293.	8.9	7
170	Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates. NeuroImage, 2021, 236, 118077.	4.2	7
171	Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach. Neurolmage, 2016, 137, 1-8.	4.2	6
172	A new ultrafast 3D gradient echoâ€based imaging method using quadraticâ€phase encoding. Magnetic Resonance in Medicine, 2019, 82, 237-250.	3.0	6
173	Feasibility of head-tilted brain scan to reduce susceptibility-induced signal loss in the prefrontal cortex in gradient echo-based imaging. NeuroImage, 2020, 223, 117265.	4.2	6
174	Perfusion MR imaging: Evolution from initial development to functional studies. NeuroImage, 2012, 62, 672-675.	4.2	5
175	Principles of BOLD Functional MRI. , 2011, , 293-303.		5
176	Principles of Functional MRI. , 2010, , 3-22.		5
177	Fast magnetization transfer and apparent <i>T</i> ₁ imaging using a short saturation pulse with and without inversion preparation. Magnetic Resonance in Medicine, 2014, 71, 1264-1271.	3.0	4
178	Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T. BioMed Research International, 2015, 2015, 1-24.	1.9	4
179	Neural mechanisms of pain relief through paying attention to painful stimuli. Pain, 2022, 163, 1130-1138.	4.2	4

#	Article	IF	CITATIONS
181	Cortical layer-dependent CBF changes induced by neural activity. International Congress Series, 2004, 1265, 201-210.	0.2	3
182	Pseudo ontinuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magnetic Resonance in Medicine, 1999, 42, 425-429.	3.0	3
183	Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cerebral Cortex, 2022, 32, 5530-5543.	2.9	3
184	An equalâ€TE ultrafast 3D gradientâ€echo imaging method with high tolerance to magnetic susceptibility artifacts: Application to BOLD functional MRI. Magnetic Resonance in Medicine, 2021, 85, 1986-2000.	3.0	2
185	Determination of relative CMRO2 from CBF and BOLD changes: Significant increase of oxygen consumption rate during visual stimulation. , 1999, 41, 1152.		2
186	Diffusion-weighted spin-echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes. , 1999, 42, 919.		2
187	Spatial Resolution of fMRI Techniques. , 2010, , 15-21.		2
188	Spatial Resolution of fMRI Techniques. , 2020, , 65-72.		2
189	Functional Mapping in the Cat Primary Visual Cortex Using High Magnetic Fields. , 2002, , 195-220.		1
190	MRI Compatible, Customizable, and 3D-Printable Microdrive for Neuroscience Research. ENeuro, 2021, 8, ENEURO.0495-20.2021.	1.9	1
191	Spatial Resolution of fMRI Techniques. , 2013, , 17-24.		1
192	Comparison of T2*-weighted sequences for functional MRI. International Journal of Imaging Systems and Technology, 1995, 6, 184-190.	4.1	0
193	Spatial specificity of CBF and BOLD responses induced by neural activity. International Congress Series, 2002, 1235, 39-47.	0.2	0
194	S3f2-1 Physiological basis of functional MRI : Challenging spatial and temporal limits(S3-f2: "Advances) Tj ETQq0	0 0 rgBT / 0.1	Overlock 10 0
195	Principles of BOLD Functional MRI. , 2015, , 3-16.		0

196Phase imaging with multiple phaseâ€cycled balanced steadyâ€state free precession at 9.4ÂT. NMR in
Biomedicine, 2017, 30, e3699.2.80