Anna Hoerder-Suabedissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8116436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	27.8	341
2	A Transcriptomic Atlas of Mouse Neocortical Layers. Neuron, 2011, 71, 605-616.	8.1	266
3	Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Frontiers in Cellular Neuroscience, 2017, 11, 78.	3.7	228
4	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	1.5	224
5	Development, evolution and pathology of neocortical subplate neurons. Nature Reviews Neuroscience, 2015, 16, 133-146.	10.2	214
6	Novel Markers Reveal Subpopulations of Subplate Neurons in the Murine Cerebral Cortex. Cerebral Cortex, 2009, 19, 1738-1750.	2.9	145
7	Molecular Diversity of Early-Born Subplate Neurons. Cerebral Cortex, 2013, 23, 1473-1483.	2.9	133
8	A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 2016, 89, 536-549.	8.1	124
9	Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice. Cerebral Cortex, 2018, 28, 1882-1897.	2.9	123
10	Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3555-3560.	7.1	108
11	Development of the Corticothalamic Projections. Frontiers in Neuroscience, 2012, 6, 53.	2.8	97
12	Subplate in the developing cortex of mouse and human. Journal of Anatomy, 2010, 217, 368-380.	1.5	78
13	Comparative Aspects of Subplate Zone Studied with Gene Expression in Sauropsids and Mammals. Cerebral Cortex, 2011, 21, 2187-2203.	2.9	75
14	A role for the cortex in sleep–wake regulation. Nature Neuroscience, 2021, 24, 1210-1215.	14.8	73
15	Extracortical origin of some murine subplate cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8613-8618.	7.1	68
16	The Regulation of Corticofugal Fiber Targeting by Retinal Inputs. Cerebral Cortex, 2016, 26, 1336-1348.	2.9	68
17	Hypothesis on the Dual Origin of the Mammalian Subplate. Frontiers in Neuroanatomy, 2011, 5, 25.	1.7	60
18	Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity. Journal of Neuroscience, 2017, 37, 11912-11929.	3.6	55

#	Article	IF	CITATIONS
19	Morphology of mouse subplate cells with identified projection targets changes with age. Journal of Comparative Neurology, 2012, 520, 174-185.	1.6	53
20	In search of common developmental and evolutionary origin of the claustrum and subplate. Journal of Comparative Neurology, 2020, 528, 2956-2977.	1.6	51
21	Zika virus impairs the development of blood vessels in a mouse model of congenital infection. Scientific Reports, 2018, 8, 12774.	3.3	49
22	Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem. Developmental Biology, 2012, 365, 277-289.	2.0	41
23	Cell-Specific Loss of SNAP25 from Cortical Projection Neurons Allows Normal Development but Causes Subsequent Neurodegeneration. Cerebral Cortex, 2019, 29, 2148-2159.	2.9	37
24	Secretory function in subplate neurons during cortical development. Frontiers in Neuroscience, 2015, 9, 100.	2.8	28
25	A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Molecular Psychiatry, 2018, 23, 713-722.	7.9	28
26	Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell <scp>RNA</scp> sequencing. Journal of Anatomy, 2019, 235, 543-554.	1.5	28
27	Subplate in a rat model of preterm hypoxia-ischemia. Annals of Clinical and Translational Neurology, 2014, 1, 679-691.	3.7	21
28	Longâ€range projections from sparse populations of GABAergic neurons in murine subplate. Journal of Comparative Neurology, 2019, 527, 1610-1620.	1.6	20
29	Differential effect on myelination through abolition of activityâ€dependent synaptic vesicle release or reduction of overall electrical activity of selected cortical projections in the mouse. Journal of Anatomy, 2019, 235, 452-467.	1.5	17
30	Thalamocortical maturation in mice is influenced by body weight. Journal of Comparative Neurology, 2008, 511, 415-420.	1.6	16
31	Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling. Neuron, 2016, 92, 126-142.	8.1	15
32	Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex. ELife, 2021, 10, .	6.0	11
33	Loss of Dmrt5 Affects the Formation of the Subplate and Early Corticogenesis. Cerebral Cortex, 2020, 30, 3296-3312.	2.9	10
34	Maturation of Complex Synaptic Connections of Layer 5 Cortical Axons in the Posterior Thalamic Nucleus Requires SNAP25. Cerebral Cortex, 2021, 31, 2625-2638.	2.9	9
35	Crossâ€hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. Journal of Comparative Neurology, 2022, 530, 978-997.	1.6	9
36	Regional scattering of primate subplate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9676-9678.	7.1	8

#	Article	IF	CITATIONS
37	Genes Involved in the Formation of the Earliest Cortical Circuits. Novartis Foundation Symposium, 0, , 212-229.	1.1	6
38	Genes involved in the formation of the earliest cortical circuits. Novartis Foundation Symposium, 2007, 288, 212-24; discussion 224-9, 276-81.	1.1	4
39	The role of snare proteins in cortical development. Developmental Neurobiology, 0, , .	3.0	4
40	Intravital imaging of the murine subventricular zone with three photon microscopy. Cerebral Cortex, 2022, 32, 3057-3067.	2.9	2
41	Subplate and the Formation of the Earliest Cerebral Cortical Circuits. , 2010, , 19-31.		0