Lenno Krenning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/811558/publications.pdf

Version: 2024-02-01

	840776		940533	
17	1,135	11	16	
papers	citations	h-index	g-index	
			0.7.00	
23	23	23	2103	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The same, only different – DNA damage checkpoints and their reversal throughout the cell cycle. Journal of Cell Science, 2015, 128, 607-20.	2.0	243
2	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	9.7	197
3	Transient Activation of p53 in G2 Phase Is Sufficient to Induce Senescence. Molecular Cell, 2014, 55, 59-72.	9.7	177
4	Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. Journal of Cell Biology, 2012, 196, 469-482.	5.2	125
5	Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science, 2020, 367, 1151-1156.	12.6	92
6	Life or Death after a Break: What Determines the Choice?. Molecular Cell, 2019, 76, 346-358.	9.7	66
7	Chromosomes trapped in micronuclei are liable to segregation errors. Journal of Cell Science, 2018, 131, .	2.0	59
8	Recovery from a DNAâ€damageâ€induced G2 arrest requires Cdkâ€dependent activation of FoxM1. EMBO Reports, 2010, 11, 452-458.	4.5	50
9	Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nature Communications, 2016, 7, 12618.	12.8	28
10	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	9.7	22
11	Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. ELife, 2022, 11, .	6.0	20
12	Resistance of Hypoxic Cells to Ionizing Radiation Is Mediated in Part via Hypoxia-Induced Quiescence. Cells, 2021, 10, 610.	4.1	19
13	A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Reports, 2021, 34, 108675.	6.4	11
14	Sustained CHK2 activity, but not ATM activity, is critical to maintain a G1 arrest after DNA damage in untransformed cells. BMC Biology, 2021, 19, 35.	3.8	7
15	Enter the nucleus to exit the cycle. Cell Cycle, 2014, 13, 2651-2652.	2.6	3
16	Centrosomes: Please keep your social distance!. EMBO Journal, 2021, 40, e107525.	7.8	1
17	Combined Inactivation of Pocket Proteins and APC/CCdh1 by Cdk4/6 Controls Recovery from DNA Damage in G1 Phase. Cells, 2021, 10, 550.	4.1	0