
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8114124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and Functions of Tissue Macrophages. Immunity, 2014, 41, 21-35.	14.3	1,191
2	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
3	Macrophages Facilitate Electrical Conduction in the Heart. Cell, 2017, 169, 510-522.e20.	28.9	703
4	Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034.	7.1	576
5	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	14.5	537
6	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	30.7	439
7	Tissue Resident CCR2â^ and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circulation Research, 2019, 124, 263-278.	4.5	424
8	Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation In Vivo. Developmental Cell, 2005, 8, 85-95.	7.0	341
9	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	4.5	318
10	Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. Journal of Clinical Investigation, 2019, 129, 2293-2304.	8.2	283
11	Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circulation Research, 2016, 118, 1498-1511.	4.5	225
12	Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes and Development, 2006, 20, 1651-1666.	5.9	214
13	Myocarditis after Covid-19 mRNA Vaccination. New England Journal of Medicine, 2021, 385, 1332-1334.	27.0	172
14	The Macrophage in Cardiac Homeostasis and Disease. Journal of the American College of Cardiology, 2018, 72, 2213-2230.	2.8	149
15	Necrotic Myocardial Cells Release Damageâ€Associated Molecular Patterns That Provoke Fibroblast Activation In Vitro and Trigger Myocardial Inflammation and Fibrosis In Vivo. Journal of the American Heart Association, 2015, 4, e001993.	3.7	136
16	Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. , 2022, 1, 263-280.		124
17	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	4.1	121
18	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	14.5	115

#	Article	IF	CITATIONS
19	Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13379-13384.	7.1	111
20	Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight, 2016, 1, .	5.0	104
21	Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Reports, 2016, 14, 82-92.	6.4	103
22	Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circulation Research, 2019, 124, 881-890.	4.5	94
23	Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. Journal of Clinical Investigation, 2008, 118, 2404-14.	8.2	89
24	Intra-Aortic Balloon Counterpulsation in Patients With Chronic Heart Failure and Cardiogenic Shock: Clinical Response and Predictors of Stabilization. Journal of Cardiac Failure, 2015, 21, 868-876.	1.7	81
25	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	14.3	76
26	Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development (Cambridge), 2008, 135, 3161-3171.	2.5	74
27	Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight, 2017, 2,	5.0	63
28	Chemokine Receptor 2–targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 78-89.	5.6	61
29	Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages. Proceedings of the United States of America, 2020, 117, 20729-20740.	7.1	59
30	Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. Journal of Clinical Investigation, 2018, 128, 2833-2847.	8.2	58
31	Shared Circuitry. Circulation Research, 2009, 104, 159-169.	4.5	51
32	Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends in Genetics, 2008, 24, 33-40.	6.7	50
33	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	14.3	50
34	Cardiac Lymphatic Vessels, Transport, and Healing of the Infarcted Heart. JACC Basic To Translational Science, 2017, 2, 477-483.	4.1	42
35	Basophils balance healing after myocardial infarction via IL-4/IL-13. Journal of Clinical Investigation, 2021, 131, .	8.2	42
36	CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation, 2022, 145, 765-782.	1.6	42

#	Article	IF	CITATIONS
37	Macrophage Plasticity and Function in the Eye and Heart. Trends in Immunology, 2019, 40, 825-841.	6.8	38
38	Integrated multi-omic characterization of congenital heart disease. Nature, 2022, 608, 181-191.	27.8	37
39	Fibroblast Growth Factor Receptor 1 Signaling in Adult Cardiomyocytes Increases Contractility and Results in a Hypertrophic Cardiomyopathy. PLoS ONE, 2013, 8, e82979.	2.5	36
40	Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science, 2022, 376, 1343-1347.	12.6	34
41	Targeted PET Imaging of Chemokine Receptor 2–Positive Monocytes and Macrophages in the Injured Heart. Journal of Nuclear Medicine, 2021, 62, 111-114.	5.0	31
42	New Approaches to Target Inflammation in Heart Failure: Harnessing Insights from Studies of Immune Cell Diversity. Annual Review of Physiology, 2020, 82, 1-20.	13.1	29
43	SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	28
44	Rebuilding the Coronary Vasculature: Hedgehog as a New Candidate for Pharmacologic Revascularization. Trends in Cardiovascular Medicine, 2007, 17, 77-83.	4.9	26
45	Repetitive Myocardial Ischemia Promotes Coronary Growth in the Adult Mammalian Heart. Journal of the American Heart Association, 2013, 2, e000343.	3.7	23
46	Role of donor macrophages after heart and lung transplantation. American Journal of Transplantation, 2020, 20, 1225-1235.	4.7	22
47	Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Developmental Dynamics, 2008, 237, 713-724.	1.8	19
48	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	12.8	19
49	Coronary Collaterals Predict Improved Survival and Allograft Function in Patients With Coronary Allograft Vasculopathy. Circulation: Heart Failure, 2013, 6, 773-784.	3.9	15
50	Rethinking Phase II clinical trial design in heart failure. Clinical Investigation, 2013, 3, 57-68.	0.0	11
51	Beyond genomics—technological advances improving the molecular characterization and precision treatment of heart failure. Heart Failure Reviews, 2021, 26, 405-415.	3.9	7
52	SARS-CoV-2–Associated Myocarditis: A Case of Direct Myocardial Injury. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE120008273.	3.9	7
53	A Minimal-Invasive Approach for Standardized Induction of Myocardial Infarction in Mice. Circulation Research, 2020, 127, 1214-1216.	4.5	6
54	Cardiovascular Tropism and Sequelae of SARS-CoV-2 Infection. Viruses, 2022, 14, 1137.	3.3	6

#	Article	IF	CITATIONS
55	The Dynamic Role of Cardiac Macrophages in Aging and Disease. Current Cardiology Reports, 2022, 24, 925-933.	2.9	5
56	Recognition of self-DNA drives cardiac inflammation: why broken hearts fail. Nature Medicine, 2017, 23, 1400-1401.	30.7	4
57	Isolation of Macrophage Subsets and Stromal Cells from Human and Mouse Myocardial Specimens. Journal of Visualized Experiments, 2019, , .	0.3	3
58	The dynamic cardiac cellular landscape: visualization by molecular imaging. Nature Reviews Cardiology, 2022, 19, 345-347.	13.7	3
59	Eosinophils Confer Protection Following Myocardial Infarction. JACC Basic To Translational Science, 2020, 5, 682-684.	4.1	2
60	Pediatric and adult dilated cardiomyopathy are distinguished by distinct biomarker profiles. Pediatric Research, 2022, 92, 206-215.	2.3	2
61	Blocking IL-6 signaling deflates pulmonary arterial hypertension. Science Translational Medicine, 2018, 10, .	12.4	2
62	Derivation of extra-embryonic and intra-embryonic macrophage lineages from human pluripotent stem cells. Development (Cambridge), 2022, 149, .	2.5	2
63	Navigating the Fog: A Correlated XRM and FIB-SEM Imaging Pipeline for the Rapid and Precise Spatial Targeting of Rare Structures in Biological Samples. Microscopy and Microanalysis, 2018, 24, 2312-2313.	0.4	1
64	Breaking through the barrier: Finally hope for patients with cardiac amyloidosis. Science Translational Medicine, 2018, 10, .	12.4	1
65	Slicing Into Human Translational Cardiovascular Biology. JACC Basic To Translational Science, 2016, 1, 168-169.	4.1	0
66	Hidden agendas: Clonal hematopoiesis accelerates heart failure. Science Translational Medicine, 2018, 10, .	12.4	0
67	Re-engineering the heart with the correct components. Science Translational Medicine, 2018, 10, .	12.4	0
68	Keeping pace with the mouse heart. Science Translational Medicine, 2018, 10, .	12.4	0
69	Defining chronic kidney disease at the genetic level. Science Translational Medicine, 2019, 11, .	12.4	0
70	Genomic reorganization underlies <i>LMNA</i> -associated cardiomyopathies. Science Translational Medicine, 2019, 11, .	12.4	0