
Yong-Ro Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8113811/publications.pdf Version: 2024-02-01

YONG-RO KIM

#	Article	IF	CITATIONS
1	Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum. International Journal of Biological Macromolecules, 2009, 44, 400-407.	7.5	164
2	Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 2015, 173, 454-461.	8.2	139
3	Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloids, 2015, 44, 380-389.	10.7	95
4	The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydrate Polymers, 2007, 67, 164-173.	10.2	72
5	Properties of a Novel Thermostable Glucoamylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus in Relation to Starch Processing. Applied and Environmental Microbiology, 2004, 70, 3933-3940.	3.1	65
6	Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydrate Polymers, 2009, 75, 9-14.	10.2	60
7	Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels. Food Research International, 2018, 105, 440-445.	6.2	60
8	Clean label starch: production, physicochemical characteristics, and industrial applications. Food Science and Biotechnology, 2021, 30, 1-17.	2.6	60
9	Enzymatic Analysis of an Amylolytic Enzyme from the Hyperthermophilic Archaeon Pyrococcus furiosus Reveals Its Novel Catalytic Properties as both an α-Amylase and a Cyclodextrin-Hydrolyzing Enzyme. Applied and Environmental Microbiology, 2004, 70, 5988-5995.	3.1	59
10	Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydrate Polymers, 2006, 63, 347-354.	10.2	55
11	Preparation and Characterization of Water/Oil/Water Emulsions Stabilized by Polyglycerol Polyricinoleate and Whey Protein Isolate. Journal of Food Science, 2010, 75, E116-25.	3.1	54
12	Small and Large Deformation Rheology for Hard Wheat Flour Dough as Influenced by Mixing and Resting. Journal of Food Science, 2008, 73, E1-8.	3.1	48
13	Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR. Protein Engineering, Design and Selection, 2004, 17, 205-211.	2.1	44
14	Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocolloids, 2019, 95, 19-32.	10.7	44
15	Barley Intake Induces Bile Acid Excretion by Reduced Expression of Intestinal ASBT and NPC1L1 in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2011, 59, 6798-6805.	5.2	38
16	Modification of Rice Starch by Selective Degradation of Amylose Using AlkalophilicBacillusCyclomaltodextrinase. Journal of Agricultural and Food Chemistry, 2006, 54, 2314-2319.	5.2	36
17	Influence of methylcellulose on attributes of β-carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Research International, 2016, 87, 18-24.	6.2	35
18	Rheological and gelation properties of rice starch modified with 4-α-glucanotransferase. International Journal of Biological Macromolecules, 2008, 42, 298-304.	7.5	31

Yong-Ro Kim

#	Article	IF	CITATIONS
19	Effects of enzymatically modified starch on the encapsulation efficiency and stability of water-in-oil-in-water emulsions. Food Chemistry, 2011, 128, 266-275.	8.2	28
20	Emulsifier Dependent in vitro Digestion and Bioaccessibility of β-Carotene Loaded in Oil-in-Water Emulsions. Food Biophysics, 2018, 13, 147-154.	3.0	27
21	Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis) Tj ETQq1 1	0.784314 8.2	rgBT /Overlo
22	Structural and physicochemical properties of starch gels prepared from partially modified starches using Thermus aquaticus 4-α-glucanotransferase. Carbohydrate Polymers, 2012, 87, 2455-2463.	10.2	26
23	Enhanced solubility and bioavailability of flurbiprofen by cycloamylose. Archives of Pharmacal Research, 2011, 34, 391-397.	6.3	23
24	Fluorescence imaging of spatial location of lipids and proteins during digestion of protein-stabilized oil-in-water emulsions: A simulated gastrointestinal tract study. Food Chemistry, 2017, 219, 297-303.	8.2	23
25	UV and storage stability of retinol contained in oil-in-water nanoemulsions. Food Chemistry, 2019, 272, 404-410.	8.2	23
26	Physicochemical properties of native and partially gelatinized high-amylose jackfruit (Artocarpus) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 4
27	Novel formulation of low-fat spread using rice starch modified by 4-α-glucanotransferase. Food Chemistry, 2016, 208, 132-141.	8.2	20
28	pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. LWT - Food Science and Technology, 2020, 129, 109474.	5.2	19
29	Study of inclusion complexes of cycloamylose with surfactants by isothermal titration calorimetry. Carbohydrate Polymers, 2009, 77, 223-230.	10.2	18
30	Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Archives of Pharmacal Research, 2012, 35, 683-689.	6.3	17
31	Influence of environmental stresses on the stability of W/O/W emulsions containing enzymatically modified starch. Carbohydrate Polymers, 2013, 92, 1503-1511.	10.2	17
32	Physicochemical interactions of cycloamylose with phenolic compounds. Carbohydrate Polymers, 2017, 174, 980-989.	10.2	17
33	Structure-based protein engineering of bacterial β-xylosidase to increase the production yield of xylobiose from xylose. Biochemical and Biophysical Research Communications, 2018, 501, 703-710.	2.1	17
34	Hypocholesterolemic and hypoglycemic effects of enzymatically modified carbohydrates from rice in highâ€fatâ€fed C57BL/6J mice. Molecular Nutrition and Food Research, 2011, 55, S214-26.	3.3	16
35	Physicochemical functionality of 4-α-glucanotransferase-treated rice flour in food application. International Journal of Biological Macromolecules, 2013, 60, 422-426.	7.5	16
36	High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase. Food Science and Biotechnology, 2016, 25, 1413-1419.	2.6	16

3

Yong-Ro Kim

#	Article	IF	CITATIONS
37	Release properties of gel-type W/O/W encapsulation system prepared using enzymatically-modified starch. Food Chemistry, 2014, 157, 77-83.	8.2	14
38	Emulsifying Properties of Proteins Isolated from Various Rice Cultivars. Food and Bioprocess Technology, 2016, 9, 813-821.	4.7	14
39	Improving the Stability and Curcumin Retention Rate of Curcumin-Loaded Filled Hydrogel Prepared Using 4αGTase-Treated Rice Starch. Foods, 2021, 10, 150.	4.3	14
40	Lipase digestibility of the oil phase in a water-in-oil-in-water emulsion. Food Science and Biotechnology, 2015, 24, 513-520.	2.6	13
41	Feasibility and characterization of the cycloamylose production from high amylose corn starch. Cereal Chemistry, 2018, 95, 838-848.	2.2	13
42	Texture properties of rice cakes made of rice flours treated with 4-α-glucanotransferase and their relationship with structural characteristics. Food Science and Biotechnology, 2012, 21, 1707-1714.	2.6	12
43	"Influence of physicochemical properties of enzymatically modified starch gel on the encapsulation efficiency of W/O/W emulsion containing NaCl― Food and Bioprocess Technology, 2017, 10, 77-88.	4.7	12
44	Optimum conditions for S-allyl-(L)-cysteine accumulation in aged garlic by RSM. Food Science and Biotechnology, 2014, 23, 717-722.	2.6	10
45	Modification of rice grain starch for lump-free cooked rice using thermostable disproportionating enzymes. Food Research International, 2014, 63, 55-61.	6.2	8
46	Retarding Oxidative and Enzymatic Degradation of Phenolic Compounds Using Large-Ring Cycloamylose. Foods, 2021, 10, 1457.	4.3	8
47	Optimizing the replacement of pork fat with fractionated barley flour paste in reduced-fat sausage. Food Science and Biotechnology, 2011, 20, 687-694.	2.6	7
48	Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. Journal of Carbohydrate Chemistry, 2020, 39, 250-266.	1.1	6
49	Influences of added surfactants on the water solubility and antibacterial activity of rosemary extract. Food Science and Biotechnology, 2020, 29, 1373-1380.	2.6	5
50	Complex formation of a 4-α-glucanotransferase using starch as a biocatalyst for starch modification. Food Science and Biotechnology, 2017, 26, 1659-1666.	2.6	4
51	Improving solubility and stability of fat-soluble vitamins (A, D, E, and K) using large-ring cycloamylose. LWT - Food Science and Technology, 2022, 153, 112502.	5.2	4
52	Affinity purification of 4-α-glucanotransferase through formation of complex with insoluble amylose. Food Science and Biotechnology, 2015, 24, 1811-1816.	2.6	2
53	Physicochemical properties and freeze–thaw stability of rice flour blends among rice cultivars with different amylose contents. Food Science and Biotechnology, 2021, 30, 1347-1356.	2.6	1
54	Non-Additive Effects of Rice Flour Blends Prepared Using Korean Rice Cultivars with Different Amylose Contents. Food Engineering Progress, 2020, 24, 261-268.	0.3	1

#	Article	IF	CITATIONS
55	Single Cell Oil-Recent Trends in Microbial Production and Utilization. Korean Journal of Food Science and Technology, 2015, 47, 687-697.	0.3	Ο
56	Influence of Starch Concentration and Mastication on the Lipid Digestion and Bioaccessibility of β-carotene loaded in Filled Hydrogels. Korean Journal of Food and Cookery Science, 2017, 33, 181-189.	0.1	0