List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology, 2020, 9, 13332-13340.	5.8	39
2	Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. International Journal of Energy Research, 2020, 44, 10192-10205.	4.5	38
3	Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique. Electrochimica Acta, 2013, 88, 639-643.	5.2	33
4	The synthesis of activated carbon nanofiber electrode made from acacia leaves (<i>Acacia mangium) Tj ETQq0 0 025007.</i>	0 rgBT /Ov 1.5	erlock 10 Tf 33
5	Activated carbon electrode from banana-peel waste for supercapacitor applications. AIP Conference Proceedings, 2017, , .	0.4	31
6	The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Materials Today: Proceedings, 2021, 44, 3346-3349.	1.8	30
7	Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition. AIP Conference Proceedings, 2013, , .	0.4	29
8	Preparation of Activated Carbon Monolith Electrodes from Sugarcane Bagasse by Physical and Physical-Chemical Activation Process for Supercapacitor Application. Advanced Materials Research, 0, 896, 179-182.	0.3	28
9	The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste. AIP Conference Proceedings, 2018, , .	0.4	28
10	Eggs Shell Membrane as Natural Separator for Supercapacitor Applications. Advanced Materials Research, 0, 896, 66-69.	0.3	24
11	Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application. Communications in Science and Technology, 2020, 5, 22-30.	0.8	21
12	Effect of surfactant on the physical properties of ZnO nanorods and the performance of ZnO photoelectrochemical cell. Journal of Experimental Nanoscience, 2015, 10, 599-609.	2.4	20
13	Averrhoa bilimbi leaves-derived oxygen doped 3D-linked hierarchical porous carbon as high-quality electrode material for symmetric supercapacitor. Journal of Energy Storage, 2022, 52, 104911.	8.1	19
14	A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process. Nanoscale Research Letters, 2011, 6, 564.	5.7	18
15	The relationship of surface area to cell capacitance for monolith carbon electrode from biomass materials for supercapacitor aplication. Journal of Physics: Conference Series, 2018, 1116, 032040.	0.4	18
16	Polymer electrolyte for photoelectrochemical cell and dye-sensitized solar cell: a brief review. Ionics, 2014, 20, 1201-1205.	2.4	16
17	Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications. AIP Conference Proceedings, 2018, , .	0.4	16
18	Effect of physical activation time on the preparation of carbon electrodes from pineapple crown waste for supercapacitor application. Journal of Physics: Conference Series, 2018, 1120, 012084.	0.4	16

#	Article	IF	CITATIONS
19	Biomass conversion into activated carbon as a sustainable energy material for the development of supercapacitor devices. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 3349-3359.	2.3	16
20	Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis. Carbon Letters, 2021, 31, 601-612.	5.9	15
21	Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance. Journal of Materials Research and Technology, 2022, 19, 4721-4732.	5.8	15
22	The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP Conference Proceedings, 2018, , .	0.4	14
23	Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors. AIP Conference Proceedings, 2018, , .	0.4	13
24	Biomass-based activated carbon monolith from <i>Tectona grandis</i> leaf as supercapacitor electrode materials. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-12.	2.3	13
25	A green and low-cost of mesoporous electrode based activated carbon monolith derived from fallen teak leaves for high electrochemical performance. Journal of Applied Engineering Science, 2021, 19, 162-171.	0.9	13
26	The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application. Journal of Physics: Conference Series, 2018, 1120, 012007.	0.4	12
27	Porous hollow biomassâ€based carbon nanofiber/nanosheet for highâ€performance supercapacitor. International Journal of Energy Research, 2022, 46, 1467-1480.	4.5	12
28	The Synthesis of Carbon Nanofiber Derived From Pineapple Leaf Fibers as a Carbon Electrode for Supercapacitor Application. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	11
29	Fabrication of a nanoparticle TiO2 photoelectrochemical cell utilizing a solid polymeric electrolyte of PAN–PC–LiClO4. Ionics, 2010, 16, 639-644.	2.4	10
30	Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications. AIP Conference Proceedings, 2013, , .	0.4	9
31	The Physical and Electrochemical Properties of Activated Carbon Electrode Derived from Pineapple Leaf Waste for Supercapacitor Applications. Journal of Physics: Conference Series, 2020, 1655, 012008.	0.4	8
32	Ultrahigh Capacitive Supercapacitor Derived from Selfâ€Oxygen Doped Biomassâ€Based 3D Porous Carbon Sources. ChemNanoMat, 2022, 8, .	2.8	7
33	The Flexible Carbon Activated Electrodes made from Coconut Shell Waste for Supercapacitor Application. IOP Conference Series: Earth and Environmental Science, 2017, 58, 012065.	0.3	5
34	Naturalcarbon-metal composite for supercapacitor application. Journal of Physics: Conference Series, 2018, 1120, 012008.	0.4	5
35	A High Potential of Biomass Leaves Waste for Porous Activated Carbon Nanofiber/Nanosheet as Electrode Material of Supercapacitor. Journal of Physics: Conference Series, 2020, 1655, 012007.	0.4	5
36	The effect of potassium iodide (KI) addition to aqueous-based electrolyte (sulfuric acid/H2SO4) for increase the performance of supercapacitor cells. Materials Today: Proceedings, 2021, 44, 3241-3244.	1.8	5

#	Article	IF	CITATIONS
37	High potential of yellow potato (Solanum Tuberosum L.) peel waste as porous carbon source for supercapacitor electrodes. Journal of Physics: Conference Series, 2022, 2193, 012019.	0.4	5
38	Fabrication of Photoelectrochemical Cell Using Highly Compact Vertical Array ZnO Nanorod. Advanced Materials Research, 2011, 364, 293-297.	0.3	4
39	Preparation and characterizations of activated carbon monolith from rubber wood and its effect on supercapacitor performances. AIP Conference Proceedings, 2016, , .	0.4	4
40	Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust. AIP Conference Proceedings, 2018, , .	0.4	4
41	Effect of Ammonia and Zinc Acetate Precursor Concentration on the Morphology of ZnO Nanorods and the Performance of a ZnO Photoelectrochemical Cell. Current Nanoscience, 2013, 9, 730-736.	1.2	4
42	Synthesis of a Carbon-activated Microfiber from Spider Webs Silk. IOP Conference Series: Earth and Environmental Science, 2017, 58, 012052.	0.3	3
43	Activated Carbon Monolith Derived from Coconut Husk Fiber as Electrode Material for Supercapacitor Energy Storage. Journal of Physics: Conference Series, 2020, 1655, 012164.	0.4	3
44	Carbon nanofiber electrode synthesis from biomass materials for supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.4	3
45	Electrode of supercapacitor synthesized from leaf bunch of oil palm for enhancing capacitive properties. AIP Conference Proceedings, 2020, , .	0.4	3
46	The physical and electrochemical properties of activated carbon electrode made from pandanus tectorius. Journal of Physics: Conference Series, 2018, 1120, 012006.	0.4	2
47	The effect of microwave irradiation in activated carbon processing from sago waste to physical and electrochemical properties of electrode supercapacitor cells. Journal of Physics: Conference Series, 2018, 1120, 012081.	0.4	2
48	The Effects of Different Activation Agents on the Physical and Electrochemical Properties of Carbon Electrodes Produced from Banana Stem Fiber. Journal of Physics: Conference Series, 2019, 1351, 012002.	0.4	2
49	Interconnected activated carbon nanofiber derived from mission grass for electrode materials of supercapacitor. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 035013.	1.5	2
50	Low-cost activated carbon bio-wasted-based for enhanced capacitive properties of symmetric supercapacitor. Journal of Physics: Conference Series, 2021, 2049, 012007.	0.4	2
51	Matoa Fruit peel-based Activated Carbon and its Application as an Electrode Materials in Supercapacitor Devices. Journal of Physics: Conference Series, 2021, 2049, 012035.	0.4	2
52	High Potential of Averrhoa bilimbi Leaf Waste as Porous Activated Carbon Source for Sustainable Electrode Material Supercapacitor. Journal of Physics: Conference Series, 2021, 2049, 012051.	0.4	2
53	Etlingera elatior leaf agricultural waste as activated carbon monolith for supercapacitor electrodes. Journal of Physics: Conference Series, 2021, 2049, 012072.	0.4	2
54	Conversion of Salam leaves (Syzygium polyanthum (Wight) Walp.) bio-kitchen waste as functional activated carbon for sustainable supercapacitor electrodes. Journal of Physics: Conference Series, 2022, 2193, 012041.	0.4	2

#	Article	IF	CITATIONS
55	Theoretical improvement of coupling parameters directional fiber coupler using Bessel function. Advanced Studies in Theoretical Physics, 0, 9, 475-482.	0.2	1
56	Carbon electrode based on durian shell: effects concentration of chemical activator agent (Potassium hydroxide). Journal of Physics: Conference Series, 2018, 1120, 012094.	0.4	1
57	Bamboo-Based Activated Carbon as Binder-Free Electrode of Supercapacitor Application. Journal of Physics: Conference Series, 2020, 1655, 012163.	0.4	1
58	Renewable and environmentally friendly of "red shoots―leaves biomass-based carbon electrode materials for supercapacitor energy storage. Journal of Physics: Conference Series, 2021, 1811, 012135.	0.4	1
59	Effective cost and high-performance supercapacitor electrodes from Syzygium oleana leave biomass wastes. Journal of Physics: Conference Series, 2021, 1811, 012134.	0.4	1
60	Effect of N ₂ carbonization temperature on porous activated carbon derived from jicama (Pachyrhizus erosus L.) peel as electrode material for supercapacitor. Journal of Physics: Conference Series, 2022, 2193, 012016.	0.4	1
61	An Optimization Method to Determine Optimum Carbonization Temperature of Banana Stems Based Activated Carbon for Supercapacitors. IOP Conference Series: Materials Science and Engineering, 2019, 599, 012030.	0.6	0
62	Activated carbon material based on angsana leaves (Pterocarpus indicus) prepared by ZnCl2 activation method as electrode for high performance supercapacitor. AlP Conference Proceedings, 2020, , .	0.4	0
63	The Self-Adhesive Carbon Powder Based on Coconut Coir Fiber as Supercapacitor Application. Journal of Metastable and Nanocrystalline Materials, 0, 33, 1-11.	0.1	0
64	Less Expensive and Eco-Friendly Preparation of Activated Carbon Derived from Coffee Leaf as an Supercapacitors Electrode. Journal of Physics: Conference Series, 2021, 2049, 012019.	0.4	0
65	Longan Leaves biomass-derived renewable activated carbon materials for electrochemical energy storage. Journal of Physics: Conference Series, 2021, 2049, 012009.	0.4	0
66	Porous Activated Carbon Binder-free Scleria sumatrensis Stem-Based for Supercapacitor Application. Journal of Physics: Conference Series, 2021, 2049, 012008.	0.4	0