Matthias A Hediger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112714/publications.pdf

Version: 2024-02-01

198 papers 31,849 citations

7096 78 h-index 175 g-index

207 all docs

207 docs citations

207 times ranked

22176 citing authors

#	Article	IF	CITATIONS
1	The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Frontiers in Physiology, 2022, 13, .	2.8	9
2	Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium, 2022, 105, 102616.	2.4	2
3	The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney International, 2021, 99, 350-363.	5.2	8
4	The N terminus of Orai1 couples to the AKAP79 signaling complex to drive NFAT1 activation by local Ca ²⁺ entry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
5	Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1. Molecular Oncology, 2021, 15, 2782-2800.	4.6	19
6	SLC66 Lysosomal amino acid transporters in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	2
7	Electrophysiological characterization of a diverse group of sugar transporters from Trichoderma reesei. Scientific Reports, 2021, 11, 14678.	3.3	10
8	Inhibitors of Human Divalent Metal Transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDBâ€17 Fragment Library. ChemMedChem, 2021, 16, 3306-3314.	3.2	8
9	Functional characterization of a highly specific l-arabinose transporter from Trichoderma reesei. Microbial Cell Factories, 2021, 20, 177.	4.0	7
1			
10	Orail Boosts SK3 Channel Activation. Cancers, 2021, 13, 6357.	3.7	6
10	Orail Boosts SK3 Channel Activation. Cancers, 2021, 13, 6357. Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040.	3.7 3.9	21
	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal		
11	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040.	3.9	21
11 12	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, .	3.9	21
11 12 13	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, . Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules, 2020, 10, 1611. Synthesis and Pharmacological Characterization of 2-Aminoethyl Diphenylborinate (2-APB) Derivatives for Inhibition of Store-Operated Calcium Entry (SOCE) in MDA-MB-231 Breast Cancer Cells.	3.9 10.3 4.0	21 22 21
11 12 13	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, . Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules, 2020, 10, 1611. Synthesis and Pharmacological Characterization of 2-Aminoethyl Diphenylborinate (2-APB) Derivatives for Inhibition of Store-Operated Calcium Entry (SOCE) in MDA-MB-231 Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 5604. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Archiv European Journal of Physiology, 2020,	3.9 10.3 4.0 4.1	21 22 21 23
11 12 13 14	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, . Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules, 2020, 10, 1611. Synthesis and Pharmacological Characterization of 2-Aminoethyl Diphenylborinate (2-APB) Derivatives for Inhibition of Store-Operated Calcium Entry (SOCE) in MDA-MB-231 Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 5604. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Archiv European Journal of Physiology, 2020, 472, 1177-1206. Pyrazolyl-pyrimidones inhibit the function of human solute carrier protein SLC11A2 (hDMT1) by metal	3.9 10.3 4.0 4.1	21 22 21 23 53

#	Article	IF	CITATIONS
19	Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorganic and Medicinal Chemistry, 2019, 27, 2893-2904.	3.0	16
20	A novel STIM1-Orai1 gating interface essential for CRAC channel activation. Cell Calcium, 2019, 79, 57-67.	2.4	44
21	Unraveling the structural elements of pH sensitivity and substrate binding in the human zinc transporter SLC39A2 (ZIP2). Journal of Biological Chemistry, 2019, 294, 8046-8063.	3.4	16
22	Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Annals of Neurology, 2019, 85, 921-926.	5.3	23
23	ORAI1 channel gating and selectivity is differentially altered by natural mutations in the first or third transmembrane domain. Journal of Physiology, 2019, 597, 561-582.	2.9	37
24	Different Pharmacological Properties of GLUT9a and GLUT9b: Potential Implications in Preeclampsia. Cellular Physiology and Biochemistry, 2019, 53, 508-517.	1.6	7
25	Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds. ELife, 2019, 8 , .	6.0	15
26	Establishment of a novel microscale thermophoresis ligand-binding assay for characterization of SLC solute carriers using oligopeptide transporter PepT1 (SLC15 family) as a model system. Journal of Pharmacological and Toxicological Methods, 2018, 92, 67-76.	0.7	7
27	Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences, 2018, 43, 752-789.	7.5	308
28	Reassessment of the Transport Mechanism of the Human Zinc Transporter SLC39A2. Biochemistry, 2018, 57, 3976-3986.	2.5	22
29	Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta, 2017, 55, 94-99.	1.5	48
30	Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-2 (PMCA2) activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1413-1424.	4.1	6
31	A novel proton transfer mechanism in the SLC11 family of divalent metal ion transporters. Scientific Reports, 2017, 7, 6194.	3.3	29
32	TRPV5 and TRPV6 Calcium-Selective Channels. , 2017, , 241-274.		21
33	Concise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes. ACS Chemical Neuroscience, 2016, 7, 534-539.	3.5	14
34	Redox modulation of STIM-ORAI signaling. Cell Calcium, 2016, 60, 142-152.	2.4	41
35	Conservation of the oligomeric state of native VDAC1 in detergent micelles. Biochimie, 2016, 127, 163-172.	2.6	3
36	Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria. Journal of the American Society of Nephrology: JASN, 2016, 27, 1426-1436.	6.1	21

#	Article	IF	Citations
37	The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Clial Glutamate Transporter GLT-1/SLC1A2. Journal of Biological Chemistry, 2015, 290, 30464-30474.	3.4	7
38	Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligandâ€Based Virtual Screening Method. Angewandte Chemie - International Edition, 2015, 54, 14748-14752.	13.8	40
39	A Call for Systematic Research on Solute Carriers. Cell, 2015, 162, 478-487.	28.9	457
40	Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochemical Pharmacology, 2015, 96, 216-224.	4.4	24
41	Rapid Method to Express and Purify Human Membrane Protein Using the Xenopus Oocyte System for Functional and Low-Resolution Structural Analysis. Methods in Enzymology, 2015, 556, 241-265.	1.0	7
42	Mutations in <i>SLC1A4</i> , encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. Journal of Medical Genetics, 2015, 52, 541-547.	3.2	68
43	Development of the First Fluorescence Screening Assay for the SLC39A2 Zinc Transporter. Journal of Biomolecular Screening, 2014, 19, 909-916.	2.6	10
44	Expression, purification, and projection structure by single particle electron microscopy of functional human TRPM4 heterologously expressed in Xenopus laevis oocytes. Protein Expression and Purification, 2014, 95, 169-176.	1.3	7
45	Nutrient Transport in the Mammary Gland: Calcium, Trace Minerals and Water Soluble Vitamins. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 73-90.	2.7	44
46	Development and Validation of a Fast and Homogeneous Cell-Based Fluorescence Screening Assay for Divalent Metal Transporter 1 (DMT1/SLC11A2) Using the FLIPR Tetra. Journal of Biomolecular Screening, 2014, 19, 900-908.	2.6	11
47	Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response. Laboratory Investigation, 2014, 94, 873-880.	3.7	28
48	Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System. PLoS ONE, 2014, 9, e108852.	2.5	34
49	Proton-coupled oligopeptide transporter family SLC15: Physiological, pharmacological and pathological implications. Molecular Aspects of Medicine, 2013, 34, 323-336.	6.4	260
50	Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorganic and Medicinal Chemistry, 2013, 21, 3202-3213.	3.0	54
51	Human TRPV5 and TRPV6: Key players in cadmium and zinc toxicity. Cell Calcium, 2013, 54, 276-286.	2.4	43
52	Mammalian iron transporters: Families SLC11 and SLC40. Molecular Aspects of Medicine, 2013, 34, 270-287.	6.4	110
53	The urea transporter family (SLC14): Physiological, pathological and structural aspects. Molecular Aspects of Medicine, 2013, 34, 313-322.	6.4	52
54	The SLC1 high-affinity glutamate and neutral amino acid transporter family. Molecular Aspects of Medicine, 2013, 34, 108-120.	6.4	255

#	Article	IF	CITATIONS
55	Solute carriers (SLCs) in cancer. Molecular Aspects of Medicine, 2013, 34, 719-734.	6.4	63
56	The ABCs of membrane transporters in health and disease (SLC series): Introduction. Molecular Aspects of Medicine, 2013, 34, 95-107.	6.4	478
57	The sodium-dependent ascorbic acid transporter family SLC23. Molecular Aspects of Medicine, 2013, 34, 436-454.	6.4	125
58	SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Molecular Aspects of Medicine, 2013, 34, 299-312.	6.4	97
59	Zinc transporters in prostate cancer. Molecular Aspects of Medicine, 2013, 34, 735-741.	6.4	79
60	Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in Â-cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10004-10009.	7.1	53
61	Investigation of the Inhibitory Effects of the Benzodiazepine Derivative, 5-BDBD on P2X ₄ Purinergic Receptors by two Complementary Methods. Cellular Physiology and Biochemistry, 2013, 32, 11-24.	1.6	57
62	Expression, Purification and Low-Resolution Structure of Human Vitamin C Transporter SVCT1 (SLC23A1). PLoS ONE, 2013, 8, e76427.	2.5	11
63	Functional and Physiological Role of Vitamin C Transporters. Current Topics in Membranes, 2012, 70, 357-375.	0.9	54
64	Inhibition of the human epithelial calcium channel TRPV6 by 2-aminoethoxydiphenyl borate (2-APB). Cell Calcium, 2012, 52, 468-480.	2.4	68
65	Frog Oocytes to Unveil the Structure and Supramolecular Organization of Human Transport Proteins. PLoS ONE, 2011, 6, e21901.	2.5	26
66	Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium, 2011, 49, 43-55.	2.4	61
67	Chemical Inhibitors of the Calcium Entry Channel TRPV6. Pharmaceutical Research, 2011, 28, 322-330.	3.5	55
68	Synthesis, Maturation, and Trafficking of Human Na+-Dicarboxylate Cotransporter NaDC1 Requires the Chaperone Activity of Cyclophilin B. Journal of Biological Chemistry, 2011, 286, 11242-11253.	3.4	12
69	Heavy metal cations permeate the TRPV6 epithelial cation channel. FASEB Journal, 2011, 25, 1042.23.	0.5	0
70	Channels and Transporters. Chimia, 2010, 64, 662.	0.6	4
71	Identification of Selective Norbornane-Type Aspartate Analogue Inhibitors of the Glutamate Transporter 1 (GLT-1) from the Chemical Universe Generated Database (GDB). Journal of Medicinal Chemistry, $2010, 53, 7236-7250$.	6.4	40
72	Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone, 2010, 47, 301-308.	2.9	94

#	Article	IF	CITATIONS
73	Tamoxifen Inhibits TRPV6 Activity via Estrogen Receptor–Independent Pathways in TRPV6-Expressing MCF-7 Breast Cancer Cells. Molecular Cancer Research, 2009, 7, 2000-2010.	3.4	60
74	Tamoxifen inhibits TRPV6 activity via estrogen receptor independent pathways in TRPV6 transfected MCFâ€7 cells. FASEB Journal, 2009, 23, 998.29.	0.5	0
75	Calcium Channel TRPV6 Is Involved in Murine Maternal–Fetal Calcium Transport. Journal of Bone and Mineral Research, 2008, 23, 1249-1256.	2.8	98
76	Characterization of a stem cell population in lung cancer A549 cells. Biochemical and Biophysical Research Communications, 2008, 371, 163-167.	2.1	115
77	Transport model of the human Na ⁺ -coupled <scp>I</scp> -ascorbic acid (vitamin C) transporter SVCT1. American Journal of Physiology - Cell Physiology, 2008, 294, C451-C459.	4.6	24
78	Mechanisms and Regulation of Epithelial Ca ²⁺ Absorption in Health and Disease. Annual Review of Physiology, 2008, 70, 257-271.	13.1	100
79	Gain-of-function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation. Human Molecular Genetics, 2008, 17, 1613-1618.	2.9	62
80	The role of TRPV6 in breast carcinogenesis. Molecular Cancer Therapeutics, 2008, 7, 271-279.	4.1	179
81	Active Intestinal Calcium Transport in the Absence of Transient Receptor Potential Vanilloid Type 6 and Calbindin-D9k. Endocrinology, 2008, 149, 3196-3205.	2.8	204
82	The Mammalian Transporter Families. , 2008, , 91-146.		5
83	Marked Disturbance of Calcium Homeostasis in Mice With Targeted Disruption of the <i>Trpv6</i> Calcium Channel Gene. Journal of Bone and Mineral Research, 2007, 22, 274-285.	2.8	251
84	Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochemical Journal, 2007, 403, 59-69.	3.7	147
85	Vitamin D. Annals of the New York Academy of Sciences, 2007, 1116, 340-348.	3.8	97
86	Mutations in the Tight-Junction Gene Claudin 19 (CLDN19) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement. American Journal of Human Genetics, 2006, 79, 949-957.	6.2	446
87	Distribution of the glutamate transporters GLT-1 (SLC1A2) and GLAST (SLC1A3) in peripheral organs. Anatomy and Embryology, 2006, 211, 595-606.	1.5	57
88	Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes. Pflugers Archiv European Journal of Physiology, 2006, 451, 544-558.	2.8	125
89	Molecular Physiology of Urate Transport. Physiology, 2005, 20, 125-133.	3.1	261
90	Identification of Mammalian Proline Transporter SIT1 (SLC6A20) with Characteristics of Classical System Imino. Journal of Biological Chemistry, 2005, 280, 8974-8984.	3.4	130

#	Article	IF	Citations
91	Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochemical and Biophysical Research Communications, 2005, 337, 892-900.	2.1	73
92	CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. Journal of Physiology, 2004, 557, 121-132.	2.9	41
93	Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Archiv European Journal of Physiology, 2004, 447, 677-682.	2.8	130
94	The SLC14 gene family of urea transporters. Pflugers Archiv European Journal of Physiology, 2004, 447, 603-609.	2.8	62
95	SLC11 family of H + -coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Archiv European Journal of Physiology, 2004, 447, 571-579.	2.8	105
96	The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Archiv European Journal of Physiology, 2004, 447, 469-479.	2.8	358
97	The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Archiv European Journal of Physiology, 2004, 447, 465-468.	2.8	817
98	Calcium Transporter 1 and Epithelial Calcium Channel Messenger Ribonucleic Acid Are Differentially Regulated by 1,25 Dihydroxyvitamin D3 in the Intestine and Kidney of Mice. Endocrinology, 2003, 144, 3885-3894.	2.8	218
99	The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. European Journal of Pharmacology, 2003, 479, 237-247.	3.5	174
100	Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain. Journal of Neurochemistry, 2003, 86, 896-906.	3.9	63
101	Functional Properties and Cellular Distribution of the System A Glutamine Transporter SNAT1 Support Specialized Roles in Central Neurons. Journal of Biological Chemistry, 2003, 278, 23720-23730.	3.4	126
102	K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity. Journal of Experimental Biology, 2003, 206, 245-254.	1.7	17
103	Apical Entry Channels in Calcium-Transporting Epithelia. Physiology, 2003, 18, 158-163.	3.1	31
104	Tissue-engineered neomucosa: morphology, enterocyte dynamics, and SGLT1 expression topography1. Transplantation, 2003, 75, 181-185.	1.0	38
105	Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. Journal of Physiology, 2003, 551, 729-740.	2.9	97
106	The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. Journal of Clinical Investigation, 2003, 111, 1021-1028.	8.2	174
107	A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Current Opinion in Nephrology and Hypertension, 2002, 11, 555-561.	2.0	34
108	Intestinal expression of genes involved in iron absorption in humans. American Journal of Physiology - Renal Physiology, 2002, 282, G598-G607.	3.4	67

#	Article	IF	Citations
109	Iron transport: emerging roles in health and disease. Biochemistry and Cell Biology, 2002, 80, 679-689.	2.0	58
110	Calcium-Selective Ion Channel, CaT1, Is Apically Localized in Gastrointestinal Tract Epithelia and Is Aberrantly Expressed in Human Malignancies. Laboratory Investigation, 2002, 82, 1755-1764.	3.7	222
111	Gateway to a long life?. Nature, 2002, 417, 393-395.	27.8	47
112	New view at C. Nature Medicine, 2002, 8, 445-446.	30.7	93
113	Iron Transport and Hemochromatosis. Journal of Investigative Medicine, 2002, 50, 239-246.	1.6	6
114	Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: Transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology, 2001, 120, 1666-1679.	1.3	176
115	Inhibition of CaT1 Channel Activity by a Noncompetitive IP3 Antagonist. Biochemical and Biophysical Research Communications, 2001, 280, 145-150.	2.1	24
116	Polycystin-2 Is a Novel Cation Channel Implicated in Defective Intracellular Ca2+ Homeostasis in Polycystic Kidney Disease. Biochemical and Biophysical Research Communications, 2001, 282, 341-350.	2.1	218
117	CaT1 Expression Correlates with Tumor Grade in Prostate Cancer. Biochemical and Biophysical Research Communications, 2001, 282, 729-734.	2.1	165
118	Transport Function of the Naturally Occurring Pathogenic Polycystin-2 Mutant, R742X. Biochemical and Biophysical Research Communications, 2001, 282, 1251-1256.	2.1	67
119	Structural Conservation of the Genes Encoding CaT1, CaT2, and Related Cation Channels. Genomics, 2001, 76, 99-109.	2.9	92
120	Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 2001, 509, 309-316.	2.8	269
121	An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron. Science, 2001, 291, 1755-1759.	12.6	897
122	Diurnal rhythmicity in intestinal SGLT-1 function, $\langle i \rangle V \langle i \rangle \langle sub \rangle max \langle sub \rangle$, and mRNA expression topography. American Journal of Physiology - Renal Physiology, 2001, 280, G209-G215.	3.4	65
123	Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. American Journal of Physiology - Renal Physiology, 2001, 280, F487-F494.	2.7	34
124	Intestinal metal ion absorption: an update. Current Opinion in Gastroenterology, 2001, 17, 177-183.	2.3	24
125	Single-Channel Activities of the Human Epithelial Ca 2+ Transport Proteins CaT1 and CaT2. Journal of Membrane Biology, 2001, 184, 113-120.	2.1	24
126	Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle. Journal of Comparative Neurology, 2001, 433, 101-114.	1.6	82

#	Article	IF	Citations
127	CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature, 2001, 410, 705-709.	27.8	336
128	Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Research, 2001, 914, 196-203.	2.2	54
129	Amyotrophic Lateral Sclerosis-linked Glutamate Transporter Mutant Has Impaired Glutamate Clearance Capacity. Journal of Biological Chemistry, 2001, 276, 576-582.	3.4	155
130	The vitamin C transporter SVCT2 is expressed by astrocytes in culture but not in situ. NeuroReport, 2000, 11, 1395-1399.	1.2	43
131	Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia., 2000, 421, 385-399.		99
132	Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharmaceutical Research, 2000, 17, 526-532.	3.5	85
133	Na/HCO ₃ Cotransporters in Rat Brain: Expression in Glia, Neurons, and Choroid Plexus. Journal of Neuroscience, 2000, 20, 6839-6848.	3.6	110
134	Long-term regulation of urea transporter expression by vasopressin in Brattleboro rats. American Journal of Physiology - Renal Physiology, 2000, 278, F620-F627.	2.7	34
135	A Rat Kidney-specific Calcium Transporter in the Distal Nephron. Journal of Biological Chemistry, 2000, 275, 28186-28194.	3.4	137
136	A Novel System A Isoform Mediating Na+/Neutral Amino Acid Cotransport. Journal of Biological Chemistry, 2000, 275, 22790-22797.	3.4	213
137	Human Vitamin C (l-Ascorbic Acid) Transporter SVCT1. Biochemical and Biophysical Research Communications, 2000, 267, 488-494.	2.1	191
138	Functional Roles of Histidine and Tyrosine Residues in the H+-Peptide Transporter PepT1. Biochemical and Biophysical Research Communications, 2000, 272, 726-730.	2.1	90
139	Human Calcium Transport Protein CaT1. Biochemical and Biophysical Research Communications, 2000, 278, 326-332.	2.1	190
140	A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Molecular Cell, 2000, 5, 299-309.	9.7	1,294
141	Functional and molecular characterization of the human neutral solute channel aquaporin-9. American Journal of Physiology - Renal Physiology, 1999, 277, F685-F696.	2.7	133
142	Glutamate transporters in kidney and brain. American Journal of Physiology - Renal Physiology, 1999, 277, F487-F492.	2.7	33
143	Stoichiometry and Kinetics of the High-affinity H+-coupled Peptide Transporter PepT2. Journal of Biological Chemistry, 1999, 274, 2773-2779.	3.4	61
144	Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature, 1999, 401, 383-386.	27.8	200

#	Article	IF	Citations
145	Yeast SMF1 Mediates H+-coupled Iron Uptake with Concomitant Uncoupled Cation Currents. Journal of Biological Chemistry, 1999, 274, 35089-35094.	3.4	137
146	A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature, 1999, 399, 70-75.	27.8	822
147	Metal ion transporters in mammals: structure, function and pathological implications. Journal of Physiology, 1999, 518, 1-12.	2.9	87
148	SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature Neuroscience, 1999, 2, 427-433.	14.8	282
149	Molecular Cloning and Characterization of a Channel-like Transporter Mediating Intestinal Calcium Absorption. Journal of Biological Chemistry, 1999, 274, 22739-22746.	3.4	546
150	Localization of Sodium Bicarbonate Cotransporter (NBC) Protein and Messenger Ribonucleic Acid in Rat Epididymis 1. Biology of Reproduction, 1999, 60, 573-579.	2.7	71
151	Title is missing!. Nature, 1999, 401, 383-386.	27.8	110
152	Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. Journal of Clinical Investigation, 1999, 103, 1159-1168.	8.2	95
153	Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharmaceutical Research, 1998, 15, 1244-1249.	3.5	77
154	Molecular genetics of cystinuria: Mutation analysis of SLC3A1 and evidence for another gene in the Type I (silent) phenotype. Kidney International, 1998, 54, 48-55.	5.2	70
155	[2] Expression cloning using Xenopus laevis oocytes. Methods in Enzymology, 1998, 296, 17-52.	1.0	70
156	Molecular Characterization of a Broad Selectivity Neutral Solute Channel. Journal of Biological Chemistry, 1998, 273, 24737-24743.	3.4	416
157	Characterization of a Rat Na+-Dicarboxylate Cotransporter. Journal of Biological Chemistry, 1998, 273, 20972-20981.	3.4	99
158	The Molecular Physiology of Sodium- and Proton-Coupled Solute Transporters. Physiology, 1998, 13, 123-131.	3.1	9
159	Cloning and functional expression of rNBC, an electrogenic Na ⁺ - HCO 3 â^ cotransporter from rat kidney. American Journal of Physiology - Renal Physiology, 1998, 274, F425-F432.	2.7	130
160	The amino acid transport system y ⁺ L/4F2hc is a heteromultimeric complex. FASEB Journal, 1998, 12, 1319-1329.	0.5	87
161	Urea transporters in kidney: molecular analysis and contribution to the urinary concentrating process. American Journal of Physiology - Renal Physiology, 1998, 275, F319-F324.	2.7	15
162	Symmetry of H+ Binding to the Intra- and Extracellular Side of the H+-coupled Oligopeptide Cotransporter PepT1. Journal of Biological Chemistry, 1997, 272, 7777-7785.	3.4	63

#	Article	IF	Citations
163	Membrane permeability the diversity of transmembrane transport processes. Current Opinion in Cell Biology, 1997, 9, 543-546.	5.4	17
164	Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. American Journal of Physiology - Renal Physiology, 1997, 273, F1023-F1029.	2.7	30
165	Expression cloning and characterization of a renal electrogenic Na+ /HCO3â^ cotransporter. Nature, 1997, 387, 409-413.	27.8	415
166	Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388, 482-488.	27.8	2,895
167	Structure and pharmacology of proton-linked peptide transporters. Journal of Controlled Release, 1997, 46, 31-38.	9.9	10
168	The High-Affinity Glutamate Transporter Family. , 1997, , 171-213.		26
169	Nonradioactive monitoring of organic and inorganic solute transport into single Xenopus oocytes by capillary zone electrophoresis. Biophysical Journal, 1996, 70, 998-1005.	0.5	18
170	Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate. Neuron, 1996, 16, 675-686.	8.1	2,332
171	Mammalian urea transporters. Current Opinion in Nephrology and Hypertension, 1996, 5, 401-405.	2.0	4
172	Structure, regulation and physiological roles of urea transporters. Kidney International, 1996, 49, 1615-1623.	5.2	50
173	Neuronal high-affinity glutamate transport in the rat central nervous system. NeuroReport, 1995, 6, 2357-2362.	1.2	102
174	Human Intestinal H+/Peptide Cotransporter. Journal of Biological Chemistry, 1995, 270, 6456-6463.	3.4	450
175	Electrogenic Properties of the Epithelial and Neuronal High Affinity Glutamate Transporter. Journal of Biological Chemistry, 1995, 270, 16561-16568.	3.4	169
176	Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 461-466.	2.6	228
177	Molecular Characteristics of Na+-coupled Glucose Transporters in Adult and Embryonic Rat Kidney. Journal of Biological Chemistry, 1995, 270, 29365-29371.	3.4	176
178	Expression Cloning and Characterization of the Glutamate Transporter in Neurons. Kidney and Blood Pressure Research, 1994, 17, 161-164.	2.0	0
179	Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature, 1994, 368, 563-566.	27.8	838
180	Assignment of the Gene for Cystinuria (SLC3A1) to Human Chromosome 2p21 by Fluorescence in Situ Hybridization. Genomics, 1994, 24, 413-414.	2.9	33

#	Article	IF	CITATIONS
181	Cloning and characterization of the vasopressin-regulated urea transporter. Nature, 1993, 365, 844-847.	27.8	300
182	Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature, 1993, 366, 575-580.	27.8	2,533
183	Localization of the Na+/Glucose Cotransporter Gene SGLT2 to Human Chromosome 16 Close to the Centromere. Genomics, 1993, 17, 787-789.	2.9	65
184	The elusive transporters with a high affinity for glutamate. Trends in Neurosciences, 1993, 16, 365-370.	8.6	188
185	A new family of neurotransmitter transporters: the highâ€affinity glutamate transporters. FASEB Journal, 1993, 7, 1450-1459.	0.5	169
186	Primary structure and functional characterization of a high-affinity glutamate transporter. Nature, 1992, 360, 467-471.	27.8	1,276
187	Biosynthesis of the cloned intestinal Na+/glucose cotransporter. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1064, 360-364.	2.6	53
188	Expression and characterization of the intestinal Na+/glucose cotransporter in COS-7 cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1048, 100-104.	2.4	45
189	Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. Journal of Membrane Biology, 1989, 110, 87-95.	2.1	159
190	Assignment of the human intestinal Na+/glucose cotransporter gene (SGLT1) to the q11.2 \hat{a} † qter region of chromosome 22. Genomics, 1989, 4, 297-300.	2.9	56
191	Molecular biology of Na+/glucose cotransport. Biochemical Society Transactions, 1989, 17, 810-811.	3.4	7
192	Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 1987, 330, 379-381.	27.8	1,020
193	High resolution preparative gel electrophoresis of DNA fragments and plasmid DNA using a continuous elution apparatus. Analytical Biochemistry, 1986, 159, 280-286.	2.4	13
194	The amino acid sequence of thiogalactoside transacetylase of Escherichia coli. Biochimie, 1985, 67, 101-108.	2.6	11
195	Apparatus and method for preparative gel electrophoresis. Analytical Biochemistry, 1984, 142, 445-454.	2.4	12
196	The effect of inorganic phosphate on calcium influx into rat heart mitochondria. Biochemical and Biophysical Research Communications, 1978, 80, 540-546.	2.1	31
197	The High-Affinity Glutamate and Neutral Amino-Acid Transporter Family: Structure, Function, and Physiological Relevance., 0,, 255-311.		3
198	The Allelic Variant A391T of Metal Ion Transporter ZIP8 (SLC39A8) Leads to Hypotension and Enhanced Insulin Resistance. Frontiers in Physiology, 0, 13, .	2.8	3