Andrew C Allan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8112063/publications.pdf

Version: 2024-02-01

17440 12946 18,489 153 63 131 citations h-index g-index papers 159 159 159 12490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	21.4	1,891
2	Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 2005, $1,13$.	4.3	1,290
3	Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal, 2007, 49, 414-427.	5.7	1,113
4	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	21.4	1,091
5	MYB transcription factors that colour our fruit. Trends in Plant Science, 2008, 13, 99-102.	8.8	594
6	An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10, 50.	3.6	576
7	Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. Plant Cell, 2009, 21, 168-183.	6.6	453
8	Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells Plant Cell, 1997, 9, 1559-1572.	6.6	439
9	Molecular genetics of bloodâ€fleshed peach reveals activation of anthocyanin biosynthesis by <scp>NAC</scp> transcription factors. Plant Journal, 2015, 82, 105-121.	5.7	404
10	High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell and Environment, 2011, 34, 1176-1190.	5.7	330
11	Mapâ€based cloning of the pear gene <i><scp>MYB</scp>114</i> identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92, 437-451.	5.7	279
12	An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes Â. Plant Physiology, 2012, 161, 225-239.	4.8	272
13	Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta, 2010, 231, 887-899.	3.2	254
14	Kiwifruit <i>EIL</i> and <i>ERF</i> Genes Involved in Regulating Fruit Ripening Â. Plant Physiology, 2010, 153, 1280-1292.	4.8	249
15	Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13, 68.	3.6	247
16	Analyses of Expressed Sequence Tags from Apple. Plant Physiology, 2006, 141, 147-166.	4.8	246
17	The Draft Genome Sequence of European Pear (Pyrus communis L. †Bartlett'). PLoS ONE, 2014, 9, e92644.	2.5	241
18	Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11, 93.	3.6	227

#	Article	IF	Citations
19	Environmental regulation of leaf colour in red <i>35S:PAP1 Arabidopsis thaliana</i> . New Phytologist, 2009, 182, 102-115.	7.3	215
20	Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012, 13, 19.	2.8	199
21	Enhancing ascorbate in fruits and tubers through overâ€expression of the <scp>l</scp> â€galactose pathway gene GDPâ€ <scp>l</scp> â€galactose phosphorylase. Plant Biotechnology Journal, 2012, 10, 390-397.	8.3	199
22	Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics, 2007, 8, 212.	2.8	195
23	Activatorâ€type R2R3â€MYB genes induce a repressorâ€type R2R3â€MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2019, 221, 1919-1934.	7.3	190
24	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	2.8	178
25	Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors. Plant Physiology, 2015, 167, 1243-1258.	4.8	178
26	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
27	Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in redâ€fleshed kiwifruit (⟨i⟩Actinidia chinensis⟨/i⟩). Plant Journal, 2011, 65, 106-118.	5.7	164
28	Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 2016, 67, 2159-2176.	4.8	163
29	A kiwifruit (<i>Actinidia deliciosa</i>) R2R3â€ <scp>MYB</scp> transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist, 2019, 221, 309-325.	7.3	160
30	Dietary Flavonoids from Modified Apple Reduce Inflammation Markers and Modulate Gut Microbiota in Mice. Journal of Nutrition, 2014, 144, 146-154.	2.9	153
31	Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 2019, 5, 801-809.	9.3	148
32	Effects of mechanical signaling on plant cell cytosolic calcium Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4124-4128.	7.1	147
33	Solar UV light regulates flavonoid metabolism in apple (<i>Malus</i> x <i>domestica)</i> . Plant, Cell and Environment, 2018, 41, 675-688.	5.7	146
34	Identification of Mendel's White Flower Character. PLoS ONE, 2010, 5, e13230.	2.5	135
35	The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany, 2009, 60, 3765-3779.	4.8	132
36	Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae, 2012, 147, 118-125.	3.6	124

#	Article	IF	Citations
37	Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Frontiers in Plant Science, 2014, 5, 651.	3.6	124
38	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	3.6	121
39	A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana) Tj ETQq1 1	. 0,784314 3.2	4 rgBT /Overl
40	Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells. Plant Cell, 1997, 9, 1559.	6.6	117
41	QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 2012, 12, 12.	3.6	117
42	In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. Journal of Experimental Botany, 2015, 66, 1427-1436.	4.8	117
43	MYBs Drive Novel Consumer Traits in Fruits and Vegetables. Trends in Plant Science, 2018, 23, 693-705.	8.8	116
44	<i>PbrmiR397a</i> regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal, 2019, 17, 103-117.	8.3	114
45	Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. Journal of Experimental Botany, 2008, 59, 2097-2108.	4.8	112
46	Mutagenesis of kiwifruit <i><scp>CENTRORADIALIS</scp></i> àâ€like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 2019, 17, 869-880.	8.3	106
47	An Early Tobacco Mosaic Virus-Induced Oxidative Burst in Tobacco Indicates Extracellular Perception of the Virus Coat Protein. Plant Physiology, 2001, 126, 97-108.	4.8	96
48	StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany, 2019, 70, 3809-3824.	4.8	95
49	Colour development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Biology and Technology, 2009, 51, 349-353.	6.0	94
50	Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Horticulture Research, 2019, 6, 3.	6.3	94
51	<i>PpGST1</i> , an anthocyaninâ€related glutathione Sâ€transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal, 2020, 18, 1284-1295.	8.3	93
52	Analysis of genetically modified redâ€fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 2013, 11, 408-419.	8.3	92
53	Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biology, 2014, 14, 388.	3.6	89
54	Genomeâ€wide analysis of coding and nonâ€coding RNA reveals a conserved miR164â€∢i>NAC regulatory pathway for fruit ripening. New Phytologist, 2020, 225, 1618-1634.	7.3	86

#	Article	IF	CITATIONS
55	The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of <i>FaMYB10</i> and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18, 2267-2279.	8.3	82
56	Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses. PLoS ONE, 2014, 9, e84426.	2.5	81
57	Differential Gene Expression Analysis of Yunnan Red Pear, Pyrus Pyrifolia, During Fruit Skin Coloration. Plant Molecular Biology Reporter, 2011, 29, 305-314.	1.8	78
58	Metabolic and gene expression analysis of apple (Malus $\tilde{A}-$ domestica) carotenogenesis. Journal of Experimental Botany, 2012, 63, 4497-4511.	4.8	75
59	Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis. PLoS ONE, 2015, 10, e0129148.	2.5	75
60	Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63, 5437-5450.	4.8	74
61	Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods, 2008, 4, 17.	4.3	73
62	QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium) Tj ETQqC	0 0 0 rgBT /	Overlock 10 T
63	An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics, 2013, 14, 28.	2.8	73
64	PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany, 2019, 70, 1801-1814.	4.8	73
65	The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC Plant Biology, 2015, 15, 185.	3.6	65
66	Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 2017, 68, 1071-1082.	4.8	62
67	The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research, 2019, 6, 134.	6.3	61
68	Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell, 1994, 6, 1319.	6.6	60
69	Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell, 1996, 8, 1305.	6.6	60
70	The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013, 115, 285-298.	2.3	60
71	The red sport of â€~Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107, 16-23.	2.9	60
72	Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany, 2014, 65, 4985-4995.	4.8	59

#	Article	IF	CITATIONS
73	Postharvest temperature influences volatile lactone production via regulation of acyl oA oxidases in peach fruit. Plant, Cell and Environment, 2012, 35, 534-545.	5.7	58
74	Differential Sensitivity of Fruit Pigmentation to Ultraviolet Light between Two Peach Cultivars. Frontiers in Plant Science, 2017, 8, 1552.	3.6	57
75	NtMYB3, an R2R3-MYB from Narcissus, Regulates Flavonoid Biosynthesis. International Journal of Molecular Sciences, 2019, 20, 5456.	4.1	56
76	DNA demethylation is involved in the regulation of temperatureâ€dependent anthocyanin accumulation in peach. Plant Journal, 2020, 102, 965-976.	5.7	56
77	MYBA and MYBPA transcription factors coâ€regulate anthocyanin biosynthesis in blueâ€coloured berries. New Phytologist, 2021, 232, 1350-1367.	7.3	56
78	The control of chlorophyll levels in maturing kiwifruit. Planta, 2012, 236, 1615-1628.	3.2	55
79	MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Frontiers in Plant Science, 2018, 9, 1300.	3.6	55
80	Regulation of lignin biosynthesis in fruit pericarp hardening of mangosteen (Garcinia mangostana L.) after impact. Postharvest Biology and Technology, 2014, 97, 68-76.	6.0	54
81	Ethylene-related genes show a differential response to low temperature during â€~Hayward' kiwifruit ripening. Postharvest Biology and Technology, 2009, 52, 9-15.	6.0	53
82	Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 148, 817-832.	7.5	51
83	Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules, 2018, 23, 781.	3.8	50
84	The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports, 2016, 6, 20151.	3.3	49
85	De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. International Journal of Molecular Sciences, 2015, 16, 11550-11573.	4.1	47
86	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	8.3	47
87	The characterization of differential calcium signalling in tobacco guard cells. Plant Journal, 2000, 24, 335-344.	5.7	46
88	Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Frontiers in Plant Science, 2015, 6, 908.	3.6	45
89	The proanthocyanin-related transcription factors MYBC1 and WRKY44 regulate branch points in the kiwifruit anthocyanin pathway. Scientific Reports, 2020, 10, 14161.	3.3	44
90	Characterisation of the DELLA subfamily in apple (Malus x domestica Borkh.). Tree Genetics and Genomes, 2007, 3, 187-197.	1.6	43

#	Article	IF	CITATIONS
91	Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning. Frontiers in Plant Science, 2019, 10, 1248.	3.6	41
92	Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biology and Technology, 2012, 66, 1-7.	6.0	40
93	Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany, 2017, 68, 1539-1553.	4.8	39
94	Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species. Frontiers in Plant Science, 2017, 8, 1864.	3.6	38
95	Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes. Scientific Reports, 2019, 9, 17762.	3.3	38
96	An ethyleneâ€hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytologist, 2021, 232, 237-251.	7.3	37
97	The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytologist, 2022, 235, 630-645.	7.3	37
98	Heat-induced protection against death of suspension-cultured apple fruit cells exposed to low temperature. Plant, Cell and Environment, 2001, 24, 1199-1207.	5.7	36
99	Effects of redâ€leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, <i>Spodoptera litura</i> and <i>Helicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2009, 133, 117-127.	1.4	36
100	Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell, Tissue and Organ Culture, 2013, 113, 491-499.	2.3	34
101	Carbon starvation reduces carbohydrate and anthocyanin accumulation in redâ€fleshed fruit via trehalose 6â€phosphate and MYB27. Plant, Cell and Environment, 2020, 43, 819-835.	5.7	33
102	The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology, 2021, 106, 407-417.	3.9	32
103	The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry, 2018, 125, 232-238.	5.8	31
104	Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. Annals of Botany, 2013, 112, 57-68.	2.9	29
105	<i>Shy Girl</i> , a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytologist, 2021, 230, 1461-1475.	7.3	29
106	Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Scientia Horticulturae, 2017, 220, 233-242.	3.6	28
107	Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. Plant Physiology and Biochemistry, 2017, 115, 308-319.	5. 8	28
108	Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. Plant Science, 2019, 281, 242-250.	3.6	28

#	Article	IF	Citations
109	Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. Horticulture Research, 2021, 8, 77.	6.3	28
110	A chromosomeâ€scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Molecular Ecology Resources, 2022, 22, 345-360.	4.8	28
111	Phytohormone and Transcriptomic Analysis Reveals Endogenous Cytokinins Affect Kiwifruit Growth under Restricted Carbon Supply. Metabolites, 2020, 10, 23.	2.9	27
112	Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus) Tj ETQq0 0 0 rgB	T /Overlocl 2.5	₹ 10 Tf 50 6
113	A Genome-Wide Expression Profile of Salt-Responsive Genes in the Apple Rootstock Malus zumi. International Journal of Molecular Sciences, 2013, 14, 21053-21070.	4.1	25
114	A MADSâ€box gene with similarity to <i>FLC</i> is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist, 2022, 233, 2111-2126.	7.3	25
115	RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology, 2021, 41, 1510-1523.	3.1	24
116	microRNA172 targets <i>APETALA2</i> to regulate flavonoid biosynthesis in apple (<i>Malus) Tj ETQq0 0 0 rgBT</i>	Overlock	10 Tf 50 46
117	Flow cytometric analysis of tracheary element differentiation inZinnia elegans cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 68A, 81-91.	1.5	20
118	The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation. Frontiers in Plant Science, 2020, 11, 603178.	3.6	20
119	Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.	4.8	20
120	Efficient transient transformation of suspension culture-derived apple protoplasts. Plant Cell, Tissue and Organ Culture, 2002, 70, 77-82.	2.3	19
121	Small RNAs With a Big Impact on Horticultural Traits. Critical Reviews in Plant Sciences, 2020, 39, 30-43.	5.7	19
122	A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 2021, 21, 121.	3.6	18
123	Expression of ROP/RAC GTPase genes in postharvest loquat fruit in association with senescence and cold regulated lignification. Postharvest Biology and Technology, 2009, 54, 9-14.	6.0	17
124	QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theoretical and Applied Genetics, 2013, 126, 847-865.	3.6	17
125	Kiwifruit SVP2 controls developmental and drought-stress pathways. Plant Molecular Biology, 2018, 96, 233-244.	3.9	17
126	The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture, 2021, 1 , .	5.8	16

#	Article	IF	CITATIONS
127	Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 164, 2450-2464.	7.5	15
128	The mQTL hotspot on linkage group 16 for phenolic compounds in apple fruits is probably the result of a leucoanthocyanidin reductase gene at that locus. BMC Research Notes, 2012, 5, 618.	1.4	14
129	Overexpression of both AcSVP1 and AcSVP4 delays budbreak in kiwifruit A. chinensis var. deliciosa, but only AcSVP1 delays flowering in model plants. Environmental and Experimental Botany, 2018, 153, 262-270.	4.2	14
130	Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biology, 2021, 21, 411.	3.6	14
131	Identification of Genes Involved in Flavonoid Biosynthesis of Chinese Narcissus (Narcissus tazetta L.) Tj ETQq1 1 (0.784314 1.8	rg $_{13}^{ m BT}$ /Over $_{13}^{ m C}$
132	Characterization and differential expression of ethylene receptor genes during fruit development and dehiscence of durian (Durio zibethinus). Scientia Horticulturae, 2018, 240, 623-630.	3.6	13
133	Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells. Journal of Functional Foods, 2020, 65, 103734.	3.4	13
134	Redâ€foliaged apples affect the establishment, growth, and development of the light brown apple moth, <i><scp>E</scp>piphyas postvittana</i> >. Entomologia Experimentalis Et Applicata, 2013, 146, 261-275.	1.4	11
135	Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta Crystallographica Section D: Structural Biology, 2017, 73, 1007-1019.	2.3	11
136	Ac <scp>FT</scp> promotes kiwifruit inÂvitro flowering when overexpressed and Arabidopsis flowering when expressed in the vasculature under its own promoter. Plant Direct, 2018, 2, e00068.	1.9	11
137	Heat-induced oxidative activity protects suspension-cultured plant cells from low temperature damage. Functional Plant Biology, 2006, 33, 67.	2.1	10
138	NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Biology, 2021, 21, 275.	3.6	9
139	The intracellular events triggered by the self-incompatibility response inPapaver rhoeas. Protoplasma, 1999, 208, 99-106.	2.1	8
140	An improved method for transformation of Actinidia arguta utilized to demonstrate a central role for MYB110 in regulating anthocyanin accumulation in kiwiberry. Plant Cell, Tissue and Organ Culture, 2020, 143, 291-301.	2.3	8
141	The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. Frontiers in Plant Science, 0, 13, .	3.6	8
142	The Genetics of Kiwifruit Flavor and Fragrance. Compendium of Plant Genomes, 2016, , 135-147.	0.5	7
143	Domestication: Colour and Flavour Joined by a Shared Transcription Factor. Current Biology, 2019, 29, R57-R59.	3.9	7
144	Feasibility of Genome-wide Association Analysis Using a Small Single Nucleotide Polymorphism Panel in an Apple Breeding Population Segregating for Fruit Skin Color. Journal of the American Society for Horticultural Science, 2014, 139, 619-626.	1.0	7

#	Article	IF	CITATIONS
145	Genetics of Pigment Biosynthesis and Degradation. Compendium of Plant Genomes, 2016, , 149-161.	0.5	6
146	Rate of banana fruit ripening depends on genome composition and gene expression of ethylene signaling and ethylene biosynthesis. Scientia Horticulturae, 2021, 290, 110552.	3.6	5
147	Apple Functional Genomics. , 2009, , 121-142.		3
148	Time to retire? A lifeâ€changing decision made by NAC transcription factors. New Phytologist, 2021, 231, 505-507.	7.3	3
149	The effects of calcium deficiency on Cucurbita pepo L. hypocotyl cells: A 31P nuclear-magnetic-resonance study. Planta, 1993, 189, 306-311.	3.2	2
150	Kiwifruit maturation, ripening and environmental response is not affected by CENTRORADIALIS (CEN) gene-editing. New Zealand Journal of Crop and Horticultural Science, 0 , , 1 - 17 .	1.3	2
151	Orange is not just a colour. Nature Plants, 2018, 4, 865-866.	9.3	1
152	Characterisation of induced Malus x domestica †Royal Gala†cell differentiation by using different hormones in cell cultures. Journal of Horticultural Science and Biotechnology, 0, , 1-15.	1.9	1
153	Plant biology: Environmental extremes induce a jump in peach fitness. Current Biology, 2021, 31, R1046-R1048.	3.9	O