Alvin C Powers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8110573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity of Diabetes: Î ² -Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care. 2022, 45, 3-22.	8.6	14
2	Deep learning-based pancreas volume assessment in individuals with type 1 diabetes. BMC Medical Imaging, 2022, 22, 5.	2.7	3
3	α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals. Journal of Clinical Investigation, 2022, 132, .	8.2	24
4	Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
5	COVID-19 vaccine prioritisation for type 1 and type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2021, 9, 140-141.	11.4	40
6	Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. Npj Regenerative Medicine, 2021, 6, 22.	5.2	14
7	Type 1 diabetes mellitus: much progress, many opportunities. Journal of Clinical Investigation, 2021, 131,	8.2	57
8	Endocrine toxicities of immune checkpoint inhibitors. Nature Reviews Endocrinology, 2021, 17, 389-399.	9.6	162
9	The Human Islet: Mini-Organ With Mega-Impact. Endocrine Reviews, 2021, 42, 605-657.	20.1	44
10	There is more than one way to reach type 2 diabetes. Nature Metabolism, 2021, 3, 894-895.	11.9	2
11	Distinguishing the real from the hyperglycaemia: does COVID-19 induce diabetes?. Lancet Diabetes and Endocrinology,the, 2021, 9, 328-329.	11.4	23
12	Development of a standardized MRI protocol for pancreas assessment in humans. PLoS ONE, 2021, 16, e0256029.	2.5	9
13	Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Frontiers in Endocrinology, 2021, 12, 722250.	3.5	17
14	Combinatorial transcription factor profiles predict mature and functional human islet α and β cells. JCI Insight, 2021, 6, .	5.0	22
15	What is a β cell? – Chapter I in the Human Islet Research Network (HIRN) review series. Molecular Metabolism, 2021, 53, 101323.	6.5	20
16	Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
17	Integrated Analysis of the Pancreas and Islets Reveals Unexpected Findings in Human Male With Type 1 Diabetes. Journal of the Endocrine Society, 2021, 5, bvab162.	0.2	0
18	Microvessels enhance vascularization and function of transplanted insulin-producing cells. Cell Metabolism, 2021, 33, 2103-2105.	16.2	1

#	Article	IF	CITATIONS
19	Serotonin Regulates Adult β-Cell Mass by Stimulating Perinatal β-Cell Proliferation. Diabetes, 2020, 69, 205-214.	0.6	33
20	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in \hat{I}^2 Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	16.2	148
21	Pancreatlas: Applying an Adaptable Framework to Map the Human Pancreas in Health and Disease. Patterns, 2020, 1, 100120.	5.9	8
22	Dapagliflozin Does Not Directly Affect Human $\hat{I}\pm$ or \hat{I}^2 Cells. Endocrinology, 2020, 161, .	2.8	12
23	Decreased pancreatic acinar cell number in type 1 diabetes. Diabetologia, 2020, 63, 1418-1423.	6.3	47
24	Repeatability and Reproducibility of Pancreas Volume Measurements Using MRI. Scientific Reports, 2020, 10, 4767.	3.3	8
25	Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes, 2020, 69, 342-354.	0.6	41
26	RIPK3-mediated inflammation is a conserved \hat{l}^2 cell response to ER stress. Science Advances, 2020, 6, .	10.3	33
27	Tacrolimus- and sirolimus-induced human \hat{I}^2 cell dysfunction is reversible and preventable. JCI Insight, 2020, 5, .	5.0	41
28	Integrated human pseudoislet system and microfluidic platform demonstrate differences in GPCR signaling in islet cells. JCI Insight, 2020, 5, .	5.0	35
29	Pancreatic islet beta cell-specific deletion of G6pc2 reduces fasting blood glucose. Journal of Molecular Endocrinology, 2020, 64, 235-248.	2.5	16
30	Modeling Monogenic Diabetes using Human ESCs Reveals Developmental and Metabolic Deficiencies Caused by Mutations in HNF1A. Cell Stem Cell, 2019, 25, 273-289.e5.	11.1	61
31	Research digest: pioneering an oral GLP-1 receptor agonist. Lancet Diabetes and Endocrinology,the, 2019, 7, 897.	11.4	1
32	Gut-Proglucagon-Derived Peptides Are Essential for Regulating Glucose Homeostasis in Mice. Cell Metabolism, 2019, 30, 976-986.e3.	16.2	82
33	Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metabolism, 2019, 29, 769-783.e4.	16.2	151
34	NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes, 2019, 68, 1394-1402.	0.6	69
35	Maternal Western-style diet affects offspring islet composition and function in a non-human primate model of maternal over-nutrition. Molecular Metabolism, 2019, 25, 73-82.	6.5	19
36	HLA Class II Antigen Processing and Presentation Pathway Components Demonstrated by Transcriptome and Protein Analyses of Islet β-Cells From Donors With Type 1 Diabetes. Diabetes, 2019, 68, 988-1001.	0.6	90

#	Article	IF	CITATIONS
37	Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia, 2019, 62, 1036-1047.	6.3	33
38	New-Onset Post-Transplant Diabetes Mellitus after Allogeneic Hematopoietic Cell Transplant Is Initiated by Insulin Resistance, Not Immunosuppressive Medications. Biology of Blood and Marrow Transplantation, 2019, 25, 1225-1231.	2.0	14
39	Pancreas Volume Declines During the First Year After Diagnosis of Type 1 Diabetes and Exhibits Altered Diffusion at Disease Onset. Diabetes Care, 2019, 42, 248-257.	8.6	66
40	Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia, 2019, 62, 212-222.	6.3	109
41	Ectonucleoside Triphosphate Diphosphohydrolase-3 Antibody Targets Adult Human Pancreatic β Cells for InÂVitro and InÂVivo Analysis. Cell Metabolism, 2019, 29, 745-754.e4.	16.2	59
42	Examining How the MAFB Transcription Factor Affects Islet β-Cell Function Postnatally. Diabetes, 2019, 68, 337-348.	0.6	36
43	α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Reports, 2018, 22, 2667-2676.	6.4	152
44	Modifying Enzymes Are Elicited by ER Stress, Generating Epitopes That Are Selectively Recognized by CD4+ T Cells in Patients With Type 1 Diabetes. Diabetes, 2018, 67, 1356-1368.	0.6	61
45	β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes, 2018, 67, 26-35.	0.6	74
46	Metabolic Complications Precede Alloreactivity and are Characterized by Changes in Th1/Th17 Immunity. Biology of Blood and Marrow Transplantation, 2018, 24, S254-S255.	2.0	0
47	Cystic fibrosis–related diabetes is caused by islet loss and inflammation. JCI Insight, 2018, 3, .	5.0	127
48	Increased Reporting of Immune Checkpoint Inhibitor–Associated Diabetes. Diabetes Care, 2018, 41, e150-e151.	8.6	82
49	β-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes. Diabetes, 2018, 67, 2305-2318.	0.6	35
50	Insulin Access and Affordability Working Group: Conclusions and Recommendations. Diabetes Care, 2018, 41, 1299-1311.	8.6	210
51	Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks. Journal of Clinical Investigation, 2018, 129, 246-251.	8.2	65
52	The obesity epidemic and rising diabetes incidence in a low-income racially diverse southern US cohort. PLoS ONE, 2018, 13, e0190993.	2.5	58
53	Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary?. Diabetologia, 2017, 60, 753-755.	6.3	7
54	Age-Dependent Decline in the Coordinated [Ca2+] and Insulin Secretory Dynamics in Human Pancreatic Islets. Diabetes, 2017, 66, 2436-2445.	0.6	63

#	Article	IF	CITATIONS
55	Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism, 2017, 25, 1362-1373.e5.	16.2	153
56	Signals in the pancreatic islet microenvironment influence βâ€cell proliferation. Diabetes, Obesity and Metabolism, 2017, 19, 124-136.	4.4	111
57	Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nature Communications, 2017, 8, 331.	12.8	115
58	Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Scientific Reports, 2017, 7, 17231.	3.3	49
59	Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity. Diabetologia, 2017, 60, 35-38.	6.3	28
60	Loss of mTORC1 signaling alters pancreatic $\hat{I}\pm$ cell mass and impairs glucagon secretion. Journal of Clinical Investigation, 2017, 127, 4379-4393.	8.2	44
61	Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. Journal of Clinical Investigation, 2017, 127, 3835-3844.	8.2	118
62	Hyperglycemic clamp-derived disposition index is negatively associated with metabolic syndrome severity in obese subjects. Metabolism: Clinical and Experimental, 2016, 65, 835-842.	3.4	12
63	The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E91-E102.	3.5	49
64	Affordable Care Act Implementation: Challenges and Opportunities to Impact Patients With Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1315-1317.	3.6	2
65	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
66	Replicative capacity of \hat{l}^2 -cells and type 1 diabetes. Journal of Autoimmunity, 2016, 71, 59-68.	6.5	32
67	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	16.2	126
68	G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology, 2016, 157, 3002-3008.	2.8	16
69	Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E859-E868.	3.5	31
70	Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nature Medicine, 2016, 22, 1482-1487.	30.7	232
71	Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease. Diabetes, 2016, 65, 3233-3239.	0.6	20
72	The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology, 2016, 157, 220-232.	2.8	59

#	Article	IF	CITATIONS
73	Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science, 2016, 351, 711-714.	12.6	407
74	p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine, 2016, 22, 412-420.	30.7	252
75	Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. Journal of Clinical Investigation, 2016, 126, 1857-1870.	8.2	86
76	Use of the Electronic Medical Record to Assess Pancreas Size in Type 1 Diabetes. PLoS ONE, 2016, 11, e0158825.	2.5	28
77	Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist. ELife, 2016, 5, .	6.0	60
78	Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function. Journal of Biological Chemistry, 2015, 290, 13401-13416.	3.4	9
79	Current Concepts on the Pathogenesis of Type 1 Diabetes—Considerations for Attempts to Prevent and Reverse the Disease. Diabetes Care, 2015, 38, 979-988.	8.6	125
80	Suppression of Insulin Production and Secretion by a Decretin Hormone. Cell Metabolism, 2015, 21, 323-334.	16.2	111
81	A Feasible Approach to Evaluate the Relative Reactivity of NHS-Ester Activated Group with Primary Amine-Derivatized DNA Analogue and Non-Derivatized Impurity. Nucleosides, Nucleotides and Nucleic Acids, 2015, 34, 69-78.	1.1	8
82	Human Islets Have Fewer Blood Vessels than Mouse Islets and the Density of Islet Vascular Structures Is Increased in Type 2 Diabetes. Journal of Histochemistry and Cytochemistry, 2015, 63, 637-645.	2.5	89
83	Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin–DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody. Molecular Pharmaceutics, 2015, 12, 3097-3103.	4.6	3
84	Tshz1 Regulates Pancreatic Î ² -Cell Maturation. Diabetes, 2015, 64, 2905-2914.	0.6	18
85	Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E592-E602.	3.5	69
86	Microtubules Negatively Regulate Insulin Secretion in Pancreatic Î ² Cells. Developmental Cell, 2015, 34, 656-668.	7.0	90
87	Inactivating the permanent neonatal diabetes gene <i>Mnx1</i> switches insulin-producing β-cells to a Î-like fate and reveals a facultative proliferative capacity in aged β-cells. Development (Cambridge), 2015, 142, 3637-3648.	2.5	41
88	Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. Journal of Endocrinology, 2015, 227, 93-103.	2.6	35
89	Non-Invasive Bioluminescence Imaging of β-Cell Function in Obese-Hyperglycemic [ob/ob] Mice. PLoS ONE, 2014, 9, e106693.	2.5	11
90	Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development (Cambridge), 2014, 141, 1480-1491.	2.5	77

#	Article	IF	CITATIONS
91	Differentiation between temporary and real non-clearability of biotinylated IgG antibody by avidin in mice. Frontiers in Pharmacology, 2014, 5, 172.	3.5	5
92	β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment. Diabetes Care, 2014, 37, 1751-1758.	8.6	379
93	Islet Microenvironment, Modulated by Vascular Endothelial Growth Factor-A Signaling, Promotes β Cell Regeneration. Cell Metabolism, 2014, 19, 498-511.	16.2	177
94	β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1983-1992.	3.6	171
95	Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice. Diabetes, 2014, 63, 3699-3710.	0.6	46
96	The MafA Transcription Factor Becomes Essential to Islet β-Cells Soon After Birth. Diabetes, 2014, 63, 1994-2005.	0.6	106
97	Vascular Endothelial Growth Factor-A and Islet Vascularization Are Necessary in Developing, but Not Adult, Pancreatic Islets. Diabetes, 2013, 62, 4154-4164.	0.6	82
98	Pancreatic Islet Vasculature Adapts to Insulin Resistance Through Dilation and Not Angiogenesis. Diabetes, 2013, 62, 4144-4153.	0.6	98
99	Liver-Specific Disruption of the Murine Glucagon Receptor Produces α-Cell Hyperplasia. Diabetes, 2013, 62, 1196-1205.	0.6	162
100	Standardized Transportation of Human Islets: An Islet Cell Resource Center Study of more than 2,000 Shipments. Cell Transplantation, 2013, 22, 1101-1111.	2.5	27
101	Bioluminescence Imaging Reveals Dynamics of Beta Cell Loss in the Non-Obese Diabetic (NOD) Mouse Model. PLoS ONE, 2013, 8, e57784.	2.5	21
102	Inactivation of specific Î ² cell transcription factors in type 2 diabetes. Journal of Clinical Investigation, 2013, 123, 3305-3316.	8.2	414
103	Advancing Animal Models of Human Type 1 Diabetes by Engraftment of Functional Human Tissues in Immunodeficient Mice. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007757-a007757.	6.2	30
104	Enhanced expression of VEGF-A in Î ² cells increases endothelial cell number but impairs islet morphogenesis and Î ² cell proliferation. Developmental Biology, 2012, 367, 40-54.	2.0	77
105	Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia, 2012, 55, 707-718.	6.3	140
106	Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice. PLoS ONE, 2012, 7, e33529.	2.5	112
107	Hyperglycemia-Induced Proliferation of Adult Human Beta Cells Engrafted Into Spontaneously Diabetic Immunodeficient NOD-Rag1null IL2rl³null Ins2Akita Mice. Pancreas, 2011, 40, 1147-1149.	1.1	20
108	Humanized mice for the study of type 1 and type 2 diabetes. Annals of the New York Academy of Sciences, 2011, 1245, 55-58.	3.8	25

#	Article	IF	CITATIONS
109	Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20719-20724.	7.1	34
110	Bioluminescence Imaging in Mouse Models Quantifies \hat{I}^2 Cell Mass in the Pancreas and After Islet Transplantation. Molecular Imaging and Biology, 2010, 12, 42-53.	2.6	66
111	Gαo Represses Insulin Secretion by Reducing Vesicular Docking in Pancreatic β-Cells. Diabetes, 2010, 59, 2522-2529.	0.6	31
112	Human Immune System Development and Rejection of Human Islet Allografts in Spontaneously Diabetic NOD- <i>Rag1null IL2r</i> γ <i>null</i> â€^ <i>Ins2Akita</i> Mice. Diabetes, 2010, 59, 2265-2270.	0.6	68
113	Conditional Gene Targeting in Mouse Pancreatic β-Cells. Diabetes, 2010, 59, 3090-3098.	0.6	288
114	PDX1 Deficiency Causes Mitochondrial Dysfunction and Defective Insulin Secretion through TFAM Suppression. Cell Metabolism, 2009, 10, 110-118.	16.2	102
115	Molecular Imaging of the Pancreas in Small Animal Models. Gastroenterology, 2009, 136, 407-409.	1.3	12
116	Recent Efforts to Develop Imaging Methods and β -Cell-Specific Contrast Agents for Non-Invasive in vivo Assessment of β-Cell Mass. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2009, 3, 157-161.	0.6	0
117	Insulin therapy versus cell-based therapy for type 1 diabetes mellitus: what lies ahead?. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 664-665.	2.8	5
118	Revascularization of Transplanted Islets. Diabetes, 2008, 57, 2269-2271.	0.6	101
119	Glucose Metabolism In Vivo in Four Commonly Used Inbred Mouse Strains. Diabetes, 2008, 57, 1790-1799.	0.6	225
120	Factor XI protein in human pancreas and kidney. Thrombosis and Haemostasis, 2008, 100, 158-160.	3.4	12
121	Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. Journal of Clinical Investigation, 2008, 118, 3790-3797.	8.2	148
122	Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Applied Optics, 2007, 46, 2540.	2.1	42
123	Determinants of glucose tolerance in inbred mouse strains. FASEB Journal, 2007, 21, A829.	0.5	Ο
124	Complementation rescue of Pdx1 null phenotype demonstrates distinct roles of proximal and distal cis-regulatory sequences in pancreatic and duodenal expression. Developmental Biology, 2006, 298, 616-631.	2.0	28
125	In Vivo Monitoring of Pancreatic β-Cells in a Transgenic Mouse Model. Molecular Imaging, 2006, 5, 7290.2006.00007.	1.4	29
126	A Novel Method of Monitoring Response to Islet Transplantation: Bioluminescent Imaging of an NF-kB Transgenic Mouse Model. Transplantation, 2006, 81, 1185-1190.	1.0	36

#	Article	IF	CITATIONS
127	Current status of imaging pancreatic islets. Current Diabetes Reports, 2006, 6, 328-332.	4.2	11
128	Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Transplantation, 2006, 82, 452-459.	1.0	126
129	Maintenance of Hepatic Nuclear Factor 6 in Postnatal Islets Impairs Terminal Differentiation and Function of Â-Cells. Diabetes, 2006, 55, 3264-3270.	0.6	24
130	Pancreatic Islet Production of Vascular Endothelial Growth Factor-A Is Essential for Islet Vascularization, Revascularization, and Function. Diabetes, 2006, 55, 2974-2985.	0.6	386
131	Reovirus Delays Diabetes Onset but Does Not Prevent Insulitis in Nonobese Diabetic Mice. Journal of Virology, 2006, 80, 3078-3082.	3.4	17
132	In vivo monitoring of pancreatic beta-cells in a transgenic mouse model. Molecular Imaging, 2006, 5, 65-75.	1.4	17
133	Assessment of Pancreatic Islet Mass after Islet Transplantation Using In Vivo Bioluminescence Imaging. Transplantation, 2005, 79, 768-776.	1.0	87
134	Generation of Islet-Like Hormone-Producing Cells In Vitro from Adult Human Pancreas. Cell Transplantation, 2005, 14, 735-748.	2.5	11
135	Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis, 2005, 43, 80-86.	1.6	54
136	Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E707-E714.	3.5	89
137	Individual Mice Can Be Distinguished by the Period of Their Islet Calcium Oscillations. Diabetes, 2005, 54, 3517-3522.	0.6	89
138	Diabetes Referrals at a Veterans Administration Tertiary Facility: Who are the patients and why are they referred?. Diabetes Care, 2005, 28, 423-424.	8.6	4
139	Proteomic exploration of pancreatic islets in mice null for the α2A adrenergic receptor. Journal of Molecular Endocrinology, 2005, 35, 73-88.	2.5	25
140	Assessment of Human Pancreatic Islet Architecture and Composition by Laser Scanning Confocal Microscopy. Journal of Histochemistry and Cytochemistry, 2005, 53, 1087-1097.	2.5	647
141	Intraislet Endothelial Cells Contribute to Revascularization of Transplanted Pancreatic Islets. Diabetes, 2004, 53, 1318-1325.	0.6	228
142	Oxidative Stress Is a Mediator of Glucose Toxicity in Insulin-secreting Pancreatic Islet Cell Lines. Journal of Biological Chemistry, 2004, 279, 12126-12134.	3.4	92
143	Ascorbic acid recycling by cultured β cells: effects of increased glucose metabolism. Free Radical Biology and Medicine, 2004, 37, 1612-1621.	2.9	14
144	Factors Influencing Quantification of In Vivo Bioluminescence Imaging: Application to Assessment of Pancreatic Islet Transplants. Molecular Imaging, 2004, 3, 333-342.	1.4	58

#	Article	IF	CITATIONS
145	In Vivo Bioluminescence Imaging to Assess Pancreatic Islets. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2004, 4, 339-347.	0.2	2
146	A fall in portal vein insulin does not cause the alpha-cell response to mild, non-insulin-induced hypoglycemia in conscious dogs. Metabolism: Clinical and Experimental, 2003, 52, 1418-1425.	3.4	4
147	Impact of Medical Student Research in the Development of Physician-Scientists. Journal of Investigative Medicine, 2003, 51, 149-156.	1.6	112
148	Reduction in Pancreatic Transcription Factor PDX-1 Impairs Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2002, 277, 11225-11232.	3.4	347
149	Pancreatic Islet β-Cells Transiently Metabolize Pyruvate. Journal of Biological Chemistry, 2002, 277, 30914-30920.	3.4	51
150	Gene-Based Neurotransmitter Modulation in Cerebellar Granule Neurons. Journal of Neurochemistry, 2002, 68, 204-212.	3.9	7
151	An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnology, 1997, 15, 358-362.	17.5	311
152	Permeability Assessment of Capsules for Islet Transplantation ¹ . Annals of the New York Academy of Sciences, 1997, 831, 208-216.	3.8	8
153	Differential Expression of Glutamate Receptor Subtypes in Rat Pancreatic Islets. Journal of Biological Chemistry, 1996, 271, 12977-12984.	3.4	87
154	Coupling of glucose transport and phosphorylation inXenopus oocytes and cultured cells: Determination of the rate-limiting step. Journal of Cellular Physiology, 1993, 157, 509-518.	4.1	11
155	Increased Insulin-Like Growth Factor II Production and Consequent Suppression of Growth Hormone Secretion: A Dual Mechanism for Tumor-Induced Hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 701-706.	3.6	72
156	Kinetic properties of the insulin receptor tyrosine protein kinase: Activation through an insulin-stimulated tyrosine-specific, intramolecular autophosphorylation. Archives of Biochemistry and Biophysics, 1986, 244, 102-113.	3.0	60