
Luis Miguel Moreno-RamÃ-rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8108836/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or) Tj ETQq2	1 0.784314 6.3	l rggT /Over
2	MnFeNiGeSi high-entropy alloy with large magnetocaloric effect. Journal of Alloys and Compounds, 2021, 855, 157424.	5.5	44
3	Combined kinetic and Bean–Rodbell approach for describing field-induced transitions in LaFe _{11.6} Si _{1.4} alloys. Journal Physics D: Applied Physics, 2021, 54, 135003.	2.8	8
4	Analysis of the magnetic field dependence of the isothermal entropy change of inverse magnetocaloric materials. Results in Physics, 2021, 22, 103933.	4.1	14
5	Hysteresis, latent heat and cycling effects on the magnetocaloric response of (NiMnSi)0.66(Fe2Ge)0.34 alloy. Intermetallics, 2021, 131, 107083.	3.9	12
6	Reversibility of the Magnetocaloric Effect in the Bean-Rodbell Model. Magnetochemistry, 2021, 7, 60.	2.4	6
7	Increased magnetocaloric response of FeMnNiGeSi high-entropy alloys. Acta Materialia, 2021, 212, 116931.	7.9	48
8	Characterization of thermal hysteresis in magnetocaloric NiMnIn Heusler alloys by Temperature First Order Reversal Curves (TFORC). Journal of Alloys and Compounds, 2021, 867, 159184.	5.5	17
9	Deconvolution of overlapping first and second order phase transitions in a NiMnIn Heusler alloy using the scaling laws of the magnetocaloric effect. Journal of Alloys and Compounds, 2021, 871, 159621.	5.5	12
10	First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials. Science China Materials, 2021, 64, 2846-2857.	6.3	62
11	Setting the Basis for the Interpretation of Temperature First Order Reversal Curve (TFORC) Distributions of Magnetocaloric Materials. Metals, 2020, 10, 1039.	2.3	12
12	Correction to "A procedure to obtain the parameters of curie temperature distribution from thermomagnetic and magnetocaloric data―orginally published as J. non-cryst. solids 520, 119,460 (2019). Journal of Non-Crystalline Solids, 2020, 538, 120047.	3.1	1
13	Tunable first order transition in La(Fe,Cr,Si)13 compounds: Retaining magnetocaloric response despite a magnetic moment reduction. Acta Materialia, 2019, 175, 406-414.	7.9	45
14	A procedure to obtain the parameters of Curie temperature distribution from thermomagnetic and magnetocaloric data. Journal of Non-Crystalline Solids, 2019, 520, 119460.	3.1	10
15	Influence of low temperature truncated calorimetric data on the determination of the magnetocaloric effect of biphasic materials. Journal of Magnetism and Magnetic Materials, 2019, 479, 236-239.	2.3	0
16	Influence of Thermal and Magnetic History on Direct ΔTad Measurements of Ni49+xMn36â^'xIn15 Heusler Alloys. Metals, 2019, 9, 1144.	2.3	5
17	How concurrent thermomagnetic transitions can affect magnetocaloric effect: The Ni49+xMn36-xIn15 Heusler alloy case. Acta Materialia, 2019, 166, 459-465.	7.9	27
18	Influence of the starting temperature of calorimetric measurements on the accuracy of determined magnetocaloric effect. Journal of Magnetism and Magnetic Materials, 2018, 457, 64-69.	2.3	15

#	Article	IF	CITATIONS
19	Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, 93, 112-232.	32.8	1,031
20	The role of Ni in modifying the order of the phase transition of La(Fe,Ni,Si)13. Acta Materialia, 2018, 160, 137-146.	7.9	45
21	Correction of the shape effect on magnetic entropy change in ball milled Fe70Zr30 alloys. Journal of Alloys and Compounds, 2018, 765, 437-443.	5.5	10
22	A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nature Communications, 2018, 9, 2680.	12.8	273
23	Grinding and particle size selection as a procedure to enhance the magnetocaloric response of La(Fe,Si)13 bulk samples. Intermetallics, 2017, 84, 30-34.	3.9	14
24	Ball milling as a way to produce magnetic and magnetocaloric materials: a review. Journal of Materials Science, 2017, 52, 11834-11850.	3.7	41
25	Influence of Noise on the Determination of Curie Temperature From Magnetocaloric Analysis. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	1
26	Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect. Materials and Design, 2017, 114, 214-219.	7.0	22
27	Optimal temperature range for determining magnetocaloric magnitudes from heat capacity. Journal Physics D: Applied Physics, 2016, 49, 495001.	2.8	7
28	Influence of nanocrystallization on the magnetocaloric properties of Ni-based amorphous alloys: Determination of critical exponents in multiphase systems. Journal of Alloys and Compounds, 2016, 686, 717-722.	5.5	17
29	Gd+GdZn biphasic magnetic composites synthesized in a single preparation step: Increasing refrigerant capacity without decreasing magnetic entropy change. Journal of Alloys and Compounds, 2016, 675, 244-247.	5.5	29
30	Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys. Journal of Magnetism and Magnetic Materials, 2016, 409, 56-61.	2.3	14
31	A New Method for Determining the Curie Temperature From Magnetocaloric Measurements. IEEE Magnetics Letters, 2016, 7, 1-4.	1.1	10
32	Analysis of the Magnetocaloric Effect in Powder Samples Obtained by Ball Milling. Metallurgical and Materials Transactions E, 2015, 2, 131-138.	0.5	7
33	Analysis of magnetocaloric effect of ball milled amorphous alloys: Demagnetizing factor and Curie temperature distribution. Journal of Alloys and Compounds, 2015, 622, 606-609.	5.5	20
34	Effect of α-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5. Journal of Alloys and Compounds, 2015, 646, 101-105.	5.5	17
35	A procedure to extract the magnetocaloric parameters of the single phases from experimental data of a multiphase system. Applied Physics Letters, 2014, 105, 172405.	3.3	8
36	Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching. Journal of Applied Physics, 2014, 115, .	2.5	26

#	ARTICLE	IF	CITATIONS
37	Amorphization and evolution of magnetic properties during mechanical alloying of Co62Nb6Zr2B30: Dependence on starting boron microstructure. Journal of Alloys and Compounds, 2014, 585, 485-490.	5.5	19