Jonathan Knappett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8108373/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Control of screw pile installation to optimise performance for offshore energy applications. Geotechnique, 2023, 73, 234-249.	4.0	10
2	Centrifuge modelling of root–soil interaction of laterally loaded trees under different loading conditions. Geotechnique, 2023, 73, 766-780.	4.0	7
3	Thermally induced ratcheting of a thermo-active reinforced concrete pile in sand under sustained lateral load. Geotechnique, 2023, 73, 826-839.	4.0	9
4	Physical modelling to demonstrate the feasibility of screw piles for offshore jacket-supported wind energy structures. Geotechnique, 2022, 72, 108-126.	4.0	23
5	Centrifuge modelling of the use of discretely spaced energy pile row to reinforce unsaturated silt. Geotechnique, 2022, 72, 618-631.	4.0	10
6	Design Optimisation of Deep Pile Foundations Installed by Static Forces. , 2022, , .		0
7	DRAM: A three-dimensional analytical model for the mobilisation of root reinforcement in direct shear conditions. Ecological Engineering, 2022, 179, 106621.	3.6	2
8	A finite element approach for determining the full load–displacement relationship of axially loaded shallow screw anchors, incorporating installation effects. Canadian Geotechnical Journal, 2021, 58, 565-582.	2.8	23
9	Nonlinear Lateral Response of RC Pile in Sand: Centrifuge and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, 04021031.	3.0	6
10	Assessing single-helix screw pile geometry on offshore installation and axial capacity. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2021, 174, 512-529.	1.6	9
11	Modelling the seismic performance of root-reinforced slopes using the finite-element method. Geotechnique, 2020, 70, 375-391.	4.0	15
12	A critical evaluation of predictive models for rooted soil strength with application to predicting the seismic deformation of rooted slopes. Landslides, 2020, 17, 93-109.	5.4	23
13	Optimised design of screw anchors in tension in sand for renewable energy applications. Ocean Engineering, 2020, 217, 108010.	4.3	11
14	Small-scale modelling of root-soil interaction of trees under lateral loads. Plant and Soil, 2020, 456, 289-305.	3.7	14
15	Small-Scale Modeling of Thermomechanical Behavior of Reinforced Concrete Energy Piles in Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, 04020011.	3.0	12
16	Effect of soil deformability on the failure mechanism of shallow plate or screw anchors in sand. Computers and Geotechnics, 2019, 109, 34-45.	4.7	25
17	Measuring the Strength of Root-Reinforced Soil on Steep Natural Slopes Using the Corkscrew Extraction Method. Forests, 2019, 10, 1135.	2.1	5
18	In situ root identification through blade penetrometer testing – part 2: field testing. Geotechnique, 2018. 68. 320-331.	4.0	10

JONATHAN KNAPPETT

#	Article	IF	CITATIONS
19	In situ root identification through blade penetrometer testing – part 1: interpretative models and laboratory testing. Geotechnique, 2018, 68, 303-319.	4.0	5
20	Centrifuge modelling of the influence of slope height on the seismic performance of rooted slopes. Geotechnique, 2017, 67, 855-869.	4.0	35
21	Modelling Screwpile Installation Using the MPM. Procedia Engineering, 2017, 175, 124-132.	1.2	10
22	Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides, 2017, 14, 1747-1765.	5.4	49
23	Newmark sliding block model for predicting the seismic performance of vegetated slopes. Soil Dynamics and Earthquake Engineering, 2017, 101, 27-40.	3.8	11
24	CHD pile performance: part I – physical modelling. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2016, 169, 421-435.	1.6	18
25	Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI). Soil Dynamics and Earthquake Engineering, 2016, 89, 219-232.	3.8	59
26	New in situ techniques for measuring the properties of root-reinforced soil – laboratory evaluation. Geotechnique, 2016, 66, 27-40.	4.0	25
27	CHD pile performance: part II – numerical modelling. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2016, 169, 436-454.	1.6	18
28	The effect of buried fibres on offshore pipeline plough performance. Ocean Engineering, 2015, 108, 760-768.	4.3	1
29	Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour. Geotechnique, 2015, 65, 995-1009.	4.0	55
30	Newmark sliding block model for pile-reinforced slopes under earthquake loading. Soil Dynamics and Earthquake Engineering, 2015, 75, 265-278.	3.8	16
31	Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour. Geotechnique, 2015, , 1-15.	4.0	2
32	Use of Ricker motions as an alternative to pushover testing. International Journal of Physical Modelling in Geotechnics, 2015, 15, 44-55.	0.6	4
33	Centrifuge Modeling of the Seismic Performance of Pile-Reinforced Slopes. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	3.0	53
34	Effects of Axial Load and Slope Arrangement on Pile Group Response in Laterally Spreading Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 799-809.	3.0	21
35	Small-Scale Modeling of Reinforced Concrete Structural Elements for Use in a Geotechnical Centrifuge. Journal of Structural Engineering, 2011, 137, 1263-1271.	3.4	37
36	Lateral Spreading Forces on Bridge Piers and Pile Caps in Laterally Spreading Soil: Effect of Angle of Incidence. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1589-1599.	3.0	11

JONATHAN KNAPPETT

#	Article	IF	CITATIONS
37	Regional variation in the biomechanical properties of the human sclera. Experimental Eye Research, 2010, 90, 624-633.	2.6	126
38	Liquefaction-Induced Settlement of Pile Groups in Liquefiable and Laterally Spreading Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 1609-1618.	3.0	27
39	Mechanism of Pile Group Settlement in Liquefiable Soils. , 2008, , .		4
40	Discussion: Seismic behaviour of micropile systems. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2006, 10, 173-175.	1.0	0
41	Effect of soil permeability on soil–structure and structure–soil–structure interaction of low-rise structures. Geotechnique, 0, , 1-16.	4.0	4
42	Craig's Soil Mechanics. , 0, , .		20