

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106315/publications.pdf Version: 2024-02-01

YLLIANC

#	Article	IF	CITATIONS
1	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
2	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
3	Norovirus Vaccine Against Experimental Human GII.4 Virus Illness: A Challenge Study in Healthy Adults. Journal of Infectious Diseases, 2015, 211, 870-878.	4.0	223
4	Spike Protein VP8* of Human Rotavirus Recognizes Histo-Blood Group Antigens in a Type-Specific Manner. Journal of Virology, 2012, 86, 4833-4843.	3.4	221
5	Rotavirus VP8*: Phylogeny, Host Range, and Interaction with Histo-Blood Group Antigens. Journal of Virology, 2012, 86, 9899-9910.	3.4	152
6	Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Reviews in Molecular Medicine, 2014, 16, e5.	3.9	133
7	Serological Correlates of Protection against a GII.4 Norovirus. Vaccine Journal, 2015, 22, 923-929.	3.1	109
8	Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Scientific Reports, 2016, 6, 25222.	3.3	78
9	Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 2015, 126, 2005-2015.	1.4	65
10	An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. Scientific Reports, 2015, 5, 17687.	3.3	64
11	Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerging Microbes and Infections, 2017, 6, 1-8.	6.5	64
12	Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants. PLoS ONE, 2013, 8, e78113.	2.5	53
13	Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. Journal of General Virology, 2013, 94, 2005-2016.	2.9	51
14	High Protective Efficacy of Probiotics and Rice Bran against Human Norovirus Infection and Diarrhea in Gnotobiotic Pigs. Frontiers in Microbiology, 2016, 7, 1699.	3.5	49
15	Burden of acute gastroenteritis caused by norovirus in China: A systematic review. Journal of Infection, 2017, 75, 216-224.	3.3	49
16	Intranasal P Particle Vaccine Provided Partial Cross-Variant Protection against Human GII.4 Norovirus Diarrhea in Gnotobiotic Pigs. Journal of Virology, 2014, 88, 9728-9743.	3.4	47
17	Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes. Journal of Virology, 2016, 90, 9983-9996.	3.4	46
18	PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the <i>MLL</i> -Rearranged Disease. Cancer Research, 2016, 76, 619-629.	0.9	45

#	Article	IF	CITATIONS
19	Characterization of the new GII.17 norovirus variant that emerged recently as the predominant strain in China. Journal of General Virology, 2016, 97, 2620-2632.	2.9	44
20	Tulane Virus Recognizes the A Type 3 and B Histo-Blood Group Antigens. Journal of Virology, 2015, 89, 1419-1427.	3.4	43
21	A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface. PLoS Pathogens, 2015, 11, e1005025.	4.7	42
22	Human intestinal organoids express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus replication. Scientific Reports, 2017, 7, 12621.	3.3	42
23	Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution. PLoS Pathogens, 2017, 13, e1006707.	4.7	38
24	P[8] and P[4] Rotavirus Infection Associated with Secretor Phenotypes Among Children in South China. Scientific Reports, 2016, 6, 34591.	3.3	37
25	Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. Journal of Structural Biology, 2014, 187, 1-9.	2.8	35
26	A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine, 2014, 32, 445-452.	3.8	35
27	Subviral particle as vaccine and vaccine platform. Current Opinion in Virology, 2014, 6, 24-33.	5.4	35
28	Alberta Provincial Pediatric EnTeric Infection TEam (APPETITE): epidemiology, emerging organisms, and economics. BMC Pediatrics, 2015, 15, 89.	1.7	35
29	Newcastle Disease Virus Vector Producing Human Norovirus-Like Particles Induces Serum, Cellular, and Mucosal Immune Responses in Mice. Journal of Virology, 2014, 88, 9718-9727.	3.4	34
30	Antibody-Based Affinity Cryoelectron Microscopy at 2.6-Ã Resolution. Structure, 2016, 24, 1984-1990.	3.3	34
31	Tulane virus recognizes sialic acids as cellular receptors. Scientific Reports, 2015, 5, 11784.	3.3	33
32	Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Scientific Reports, 2016, 6, 25017.	3.3	33
33	A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine, 2016, 34, 905-913.	3.8	32
34	Recent advancements in combination subunit vaccine development. Human Vaccines and Immunotherapeutics, 2017, 13, 180-185.	3.3	32
35	Bioengineered Norovirus S ₆₀ Nanoparticles as a Multifunctional Vaccine Platform. ACS Nano, 2018, 12, 10665-10682.	14.6	28
36	Vaccine against norovirus. Human Vaccines and Immunotherapeutics, 2014, 10, 1449-1456.	3.3	27

#	Article	IF	CITATIONS
37	Application of salivary antibody immunoassays for the detection of incident infections with Norwalk virus in a group of volunteers. Journal of Immunological Methods, 2015, 424, 53-63.	1.4	27
38	Comparison of norovirus genogroup I, II and IV seroprevalence among children in the Netherlands, 1963, 1983 and 2006. Journal of General Virology, 2016, 97, 2255-2264.	2.9	26
39	ldentification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Letters, 2016, 372, 157-165.	7.2	25
40	Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens. PLoS Pathogens, 2020, 16, e1008386.	4.7	25
41	Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology, 2015, 25, 170-180.	2.5	23
42	Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Scientific Reports, 2016, 6, 25735.	3.3	23
43	Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics, 2019, 11, 472.	4.5	22
44	Burden of viral gastroenteritis in children living in rural China: Population-based surveillance. International Journal of Infectious Diseases, 2020, 90, 151-160.	3.3	21
45	Characterization of Antigenic Relatedness between Gll.4 and Gll.17 Noroviruses by Use of Serum Samples from Norovirus-Infected Patients. Journal of Clinical Microbiology, 2017, 55, 3366-3373.	3.9	19
46	Branched-linear and agglomerate protein polymers as vaccine platforms. Biomaterials, 2014, 35, 8427-8438.	11.4	18
47	Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine, 2019, 37, 4103-4110.	3.8	18
48	Strain-specific interaction of a GII.10 Norovirus with HBGAs. Virology, 2015, 476, 386-394.	2.4	17
49	Heterosubtypic protection against avian influenza virus by live attenuated and chimeric norovirus P-particle-M2e vaccines in chickens. Vaccine, 2019, 37, 1356-1364.	3.8	17
50	Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines, 2019, 7, 177.	4.4	16
51	Structural Adaptations of Norovirus GII.17/13/21 Lineage through Two Distinct Evolutionary Paths. Journal of Virology, 2019, 93, .	3.4	16
52	Supplementation of inactivated influenza vaccine with norovirus P particle-M2e chimeric vaccine enhances protection against heterologous virus challenge in chickens. PLoS ONE, 2017, 12, e0171174.	2.5	15
53	Effects of rotavirus NSP4 protein on the immune response and protection of the SR69A-VP8* nanoparticle rotavirus vaccine. Vaccine, 2021, 39, 263-271.	3.8	15
54	Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota. Journal of General Virology, 2019, 100, 1530-1540.	2.9	15

#	Article	IF	CITATIONS
55	Antigenic Relatedness of Norovirus GII.4 Variants Determined by Human Challenge Sera. PLoS ONE, 2015, 10, e0124945.	2.5	15
56	Quantifying the binding stoichiometry and affinity of histo-blood group antigen oligosaccharides for human noroviruses. Glycobiology, 2018, 28, 488-498.	2.5	14
57	Evaluation of the 50% Infectious Dose of Human Norovirus Cin-2 in Gnotobiotic Pigs: A Comparison of Classical and Contemporary Methods for Endpoint Estimation. Viruses, 2020, 12, 955.	3.3	14
58	A Nanoparticle-Based Trivalent Vaccine Targeting the Glycan Binding VP8* Domains of Rotaviruses. Viruses, 2021, 13, 72.	3.3	12
59	Human Milk Contains Elements That Block Binding of Noroviruses to Histo-Blood Group Antigens in Saliva. Advances in Experimental Medicine and Biology, 2004, 554, 447-450.	1.6	12
60	Protective immunity against influenza virus challenge by norovirus P particle-M2e and HA2-AtCYN vaccines in chickens. Vaccine, 2019, 37, 6454-6462.	3.8	9
61	Structural basis of P[II] rotavirus evolution and host ranges under selection of histo-blood group antigens. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
62	Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	8
63	Genetic susceptibility to rotavirus infection in Chinese children: a population-based case–control study. Human Vaccines and Immunotherapeutics, 2021, 17, 1803-1810.	3.3	7
64	Intra-species sialic acid polymorphism in humans: a common niche for influenza and coronavirus pandemics?. Emerging Microbes and Infections, 2021, 10, 1191-1199.	6.5	7
65	Fecal Polyomavirus Excretion in Infancy. Journal of the Pediatric Infectious Diseases Society, 2016, 5, 210-213.	1.3	6
66	Structural basis of host ligand specificity change of GII porcine noroviruses from their closely related GII human noroviruses. Emerging Microbes and Infections, 2019, 8, 1642-1657.	6.5	5
67	Histo-blood group antigens as divergent factors of groups A and C rotaviruses circulating in humans and different animal species. Emerging Microbes and Infections, 2020, 9, 1609-1617.	6.5	5
68	Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity. Nano Research, 2022, 15, 4181-4190.	10.4	5
69	Complete Genome Sequence of a GII.17 Norovirus Isolated from a Rhesus Monkey in China. Genome Announcements, 2016, 4, .	0.8	3
70	Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model. PLoS ONE, 2018, 13, e0191739.	2.5	3
71	Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Archives of Virology, 2020, 165, 1311-1320.	2.1	3
72	Characterization of Functional Components in Bovine Colostrum That Inhibit Norovirus Capsid Protruding Domains Interacting with HBGA Ligands. Pathogens, 2021, 10, 857.	2.8	2

#	Article	IF	CITATIONS
73	Update on caliciviruses and human acute gastroenteritis. Pediatric Infectious Disease Journal, 2002, 21, 1069-1070.	2.0	1
74	Simvastatin Reduces Protection and Intestinal T Cell Responses Induced by a Norovirus P Particle Vaccine in Gnotobiotic Pigs. Pathogens, 2021, 10, 829.	2.8	0
75	Norovirus Gastroenteritis. , 0, , 39-52.		0
76	Title is missing!. , 2020, 16, e1008386.		0
77	Title is missing!. , 2020, 16, e1008386.		0
78	Title is missing!. , 2020, 16, e1008386.		0
79	Title is missing!. , 2020, 16, e1008386.		Ο