William D Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106143/publications.pdf Version: 2024-02-01

		13865	24258
207	13,810	67	110
papers	citations	h-index	g-index
212	212	212	7128
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Isotope Effects in Câ [°] 'H Bond Activation Reactions by Transition Metals. Accounts of Chemical Research, 2003, 36, 140-146.	15.6	465
2	Comparative reactivities of hydrocarbon carbon-hydrogen bonds with a transition-metal complex. Accounts of Chemical Research, 1989, 22, 91-100.	15.6	447
3	An Efficient Low-Temperature Route to Polycyclic Isoquinoline Salt Synthesis via Câ^'H Activation with [Cp*MCl ₂] ₂ (M = Rh, Ir). Journal of the American Chemical Society, 2008, 130, 12414-12419.	13.7	442
4	A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles. Journal of the American Chemical Society, 2014, 136, 8564-8567.	13.7	429
5	Câ~'H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl ₂] ₂ (M =) Tj ETQ	91110.78 2.3	4314 rgBT 0 340
6	Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones. ACS Catalysis, 2014, 4, 3994-4003.	11.2	330
7	The mechanism and thermodynamics of alkane and arene carbon-hydrogen bond activation in (C5Me5)Rh(PMe3)(R)H. Journal of the American Chemical Society, 1984, 106, 1650-1663.	13.7	305
8	Cleavage of Carbonâ^'Carbon Bonds in Aromatic Nitriles Using Nickel(0). Journal of the American Chemical Society, 2002, 124, 9547-9555.	13.7	238
9	Acceptorless, Reversible Dehydrogenation and Hydrogenation of <i>N</i> -Heterocycles with a Cobalt Pincer Catalyst. ACS Catalysis, 2015, 5, 6350-6354.	11.2	230
10	Activation of C–F bonds using Cp*2ZrH2: a diversity of mechanisms. Dalton Transactions, 2003, , 3991-3995.	3.3	197
11	Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities. ACS Catalysis, 2016, 6, 2590-2602.	11.2	190
12	Kinetics, Thermodynamics, and Effect of BPh3on Competitive Câ^'C and Câ^'H Bond Activation Reactions in the Interconversion of Allyl Cyanide by [Ni(dippe)]. Journal of the American Chemical Society, 2004, 126, 3627-3641.	13.7	182
13	Mechanistic Investigation of Catalytic Carbonâ^'Carbon Bond Activation and Formation by Platinum and Palladium Phosphine Complexes. Journal of the American Chemical Society, 1998, 120, 2843-2853.	13.7	178
14	Modeling the Hydrodesulfurization Reaction at Nickel. Unusual Reactivity of Dibenzothiophenes Relative to Thiophene and Benzothiophene. Journal of the American Chemical Society, 1999, 121, 7606-7617.	13.7	171
15	A model for homogeneous hydrodesulfurization. The importance of .eta.2-coordination and sulfur coordination in carbon-hydrogen and carbon-sulfur bond cleavage reactions of thiophene. Journal of the American Chemical Society, 1992, 114, 151-160.	13.7	164
16	Reversible Cleavage of Carbonâ^'Carbon Bonds in Benzonitrile Using Nickel(0). Organometallics, 2000, 19, 5544-5545.	2.3	162
17	Mechanism of arene carbon-hydrogen bond activation by (C5Me5)Rh(PMe3)(H)Ph. Evidence for arene precoordination. Journal of the American Chemical Society, 1982, 104, 4240-4242.	13.7	161
18	Room-Temperature Desulfurization of Dibenzothiophene Mediated by [(i-Pr2PCH2)2NiH]2. Journal of the American Chemical Society, 1997, 119, 10855-10856.	13.7	160

#	Article	IF	CITATIONS
19	Alkane carbon-hydrogen bond activation by homogeneous rhodium(I) compounds. Organometallics, 1983, 2, 562-563.	2.3	156
20	Highly Selective Formation of <i>n</i> -Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach. Journal of the American Chemical Society, 2015, 137, 14264-14267.	13.7	154
21	The fall of the C-C bond. Nature, 1993, 364, 676-677.	27.8	150
22	Insertion of rhodium into the carbon-sulfur bond of thiophene. Mechanism of a model for the hydrodesulfurization reaction. Journal of the American Chemical Society, 1991, 113, 559-564.	13.7	148
23	Cleavage of the carbon–carbon bond in biphenylene using transition metals. Journal of Molecular Catalysis A, 2002, 189, 157-168.	4.8	145
24	Mechanism of Carbonâ^'Fluorine Bond Activation by (C5Me5)Rh(PMe3)H2. Journal of the American Chemical Society, 1997, 119, 7734-7742.	13.7	144
25	Catalytic Upgrading of Ethanol to <i>n</i> -Butanol via Manganese-Mediated Guerbet Reaction. ACS Catalysis, 2018, 8, 997-1002.	11.2	141
26	Cleavage of Carbonâ^'Carbon Bonds in Alkyl Cyanides Using Nickel(0). Organometallics, 2004, 23, 3997-4002.	2.3	139
27	Experimental and Theoretical Examination of Câ^'CN and Câ^'H Bond Activations of Acetonitrile Using Zerovalent Nickel. Journal of the American Chemical Society, 2007, 129, 7562-7569.	13.7	139
28	Aliphatic and Aromatic Carbonâ^'Fluorine Bond Activation with Cp*2ZrH2:Â Mechanisms of Hydrodefluorination. Journal of the American Chemical Society, 2001, 123, 10973-10979.	13.7	136
29	Catalytic Hydrogenolysis of an Aryl-Aryl Carbon-Carbon Bond with a Rhodium Complex. Journal of the American Chemical Society, 1994, 116, 3647-3648.	13.7	125
30	On the Nature of Carbonâ^'Hydrogen Bond Activation at Rhodium and Related Reactionsâ€. Inorganic Chemistry, 2005, 44, 4475-4484.	4.0	124
31	Photolysis of Tp'Rh(CN-neopentyl)(.eta.2-PhN:C:N-neopentyl) in alkanes and arenes: kinetic and thermodynamic selectivity of [Tp'Rh(CN-neopentyl)] for various types of carbon-hydrogen bonds. Journal of the American Chemical Society, 1993, 115, 554-562.	13.7	122
32	Reversible catalytic dehydrogenation of alcohols for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1687-1692.	7.1	118
33	Energetics of Câ^'H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp′Rh(CNneopentyl)] Complex. Journal of the American Chemical Society, 2009, 131, 13464-13473.	13.7	117
34	.eta.2-Coordination and carbon-fluorine activation of hexafluorobenzene by cyclopentadienylrhodium and -iridium complexes. Journal of the American Chemical Society, 1993, 115, 1429-1440.	13.7	115
35	Catalytic Câ^'C Bond Activation in Biphenylene and Cyclotrimerization of Alkynes:Â Increased Reactivity of P,N- versus P,P-Substituted Nickel Complexes. Organometallics, 2002, 21, 1975-1981.	2.3	115
36	Investigation of the Mechanism of Alkane Reductive Elimination and Skeletal Isomerization in Tpâ€~Rh(CNneopentyl)(R)H Complexes: The Role of Alkane Complexes. Journal of the American Chemical Society, 2001, 123, 7257-7270.	13.7	111

#	Article	IF	CITATIONS
37	Dibenzometallacyclopentadienes, boroles and selected transition metal and main group heterocyclopentadienes: Synthesis, catalytic and optical properties. Coordination Chemistry Reviews, 2010, 254, 1950-1976.	18.8	111
38	lsotope effects in arene carbon-hydrogen bond activation by [(C5Me5)Rh(PMe3)]. Journal of the American Chemical Society, 1986, 108, 4814-4819.	13.7	110
39	Câ^'C Activation in Biphenylene. Synthesis, Structure, and Reactivity of (C5Me5)2M2(2,2â€~-biphenyl) (M =) Tj	ETQ <u>9</u> 1 1 0.	784314 rg8T 108
40	Iron-Catalyzed Homogeneous Hydrogenation of Alkenes under Mild Conditions by a Stepwise, Bifunctional Mechanism. ACS Catalysis, 2016, 6, 2127-2135.	11.2	108
41	Carbon-hydrogen bond activation by ruthenium for the catalytic synthesis of indoles. Journal of the American Chemical Society, 1986, 108, 5640-5641.	13.7	106
42	A Single Nickel Catalyst for the Acceptorless Dehydrogenation of Alcohols and Hydrogenation of Carbonyl Compounds. Organometallics, 2015, 34, 5203-5206.	2.3	106
43	Additive-Free Cobalt-Catalyzed Hydrogenation of Esters to Alcohols. ACS Catalysis, 2017, 7, 3735-3740.	11.2	106
44	Mechanism of Vinylic and Allylic Carbonâ^'Fluorine Bond Activation of Non-Perfluorinated Olefins Using Cp*2ZrH2. Journal of the American Chemical Society, 2002, 124, 8681-8689.	13.7	101
45	Hydrodesulfurization of thiophene to butadiene and butane by a homogeneous iridium complex. Journal of the American Chemical Society, 1994, 116, 198-203.	13.7	100
46	Catalytic Carbonâ^'Carbon Bond Activation and Functionalization by Nickel Complexes. Organometallics, 1999, 18, 4040-4049.	2.3	99
47	Control of .eta.2-coordination vs. carbon-hydrogen bond activation by rhodium: the role of aromatic resonance energies. Journal of the American Chemical Society, 1993, 115, 7685-7695.	13.7	97
48	Experimental and Theoretical Examination of Câ^'CN Bond Activation of Benzonitrile Using Zerovalent Nickel. Organometallics, 2008, 27, 3811-3817.	2.3	97
49	Aliphatic Carbonâ^'Fluorine Bond Activation Using (C5Me5)2ZrH2. Journal of the American Chemical Society, 2000, 122, 8559-8560.	13.7	96
50	Câ^'CN Bond Activation of Aromatic Nitriles and Fluxionality of the η ² -Arene Intermediates: Experimental and Theoretical Investigations. Organometallics, 2010, 29, 2430-2445.	2.3	87
51	11B NMR:  A New Tool for the Determination of Hapticity of Tris(pyrazolyl)borate Ligands. Organometallics, 1998, 17, 5148-5152.	2.3	85
52	Carbonâ^'Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes. Organometallics, 1999, 18, 3170-3177.	2.3	85
53	Defluorination of Perfluoropropene Using Cp*2ZrH2and Cp*2ZrHF:Â A Mechanism Investigation from a Joint Experimentalâ^'Theoretical Perspective. Journal of the American Chemical Society, 2004, 126, 5647-5653.	13.7	85
54	Câ~'H vs Câ~'C Bond Activation of Acetonitrile and Benzonitrile via Oxidative Addition: Rhodium vs Nickel and Cp* vs Tp′ (Tp′ = Hydrotris(3,5-dimethylpyrazol-1-yl)borate, Cp* =) Tj ETQq0 0 0 rgBT /Overlock 10 Ti	f 50 62 Jd (ِ ۱۰ ⁵

16278-16284.

#	Article	IF	CITATIONS
55	Carbon Capture and Conversion. Journal of the American Chemical Society, 2020, 142, 4955-4957.	13.7	85
56	Functionalization of benzylic carbon-hydrogen bonds. Mechanism and scope of the catalytic synthesis of indoles with [Ru(dmpe)2]. Organometallics, 1994, 13, 385-396.	2.3	84
57	Catalytic Hydrogenolysis of Biphenylene with Platinum, Palladium, and Nickel Phosphine Complexes. Organometallics, 1998, 17, 4784-4794.	2.3	82
58	Energetics of Homogeneous Intermolecular Vinyl and Allyl Carbonâ^'Hydrogen Bond Activation by the 16-Electron Coordinatively Unsaturated Organometallic Fragment [Tpâ€~Rh(CNCH2CMe3)]. Organometallics, 1999, 18, 495-505.	2.3	78
59	Rhodium-Catalyzed Activation and Functionalization of the Câ^'C Bond of Biphenylene. Organometallics, 2001, 20, 5745-5750.	2.3	78
60	Synthesis and Reactivity of New Ni, Pd, and Pt 2,6-Bis(di- <i>tert</i> -butylphosphinito)pyridine Pincer Complexes. Inorganic Chemistry, 2011, 50, 9443-9453.	4.0	77
61	Deep Hydrodesulfurization in Homogeneous Solution:  Access to a Transition-Metal Insertion Complex of 4,6-Dimethyldibenzothiophene. Organometallics, 1998, 17, 3411-3413.	2.3	75
62	Reactivity and Regioselectivity of Insertion of Unsaturated Molecules into Mâ^'C (M = Ir, Rh) Bonds of Cyclometalated Complexes. Organometallics, 2010, 29, 4593-4605.	2.3	75
63	Generation of Perfluoropolyphenylene Oligomers via Carbonâ^'Fluorine Bond Activation by Cp2Zr(C6F5)2:Â A Dual Mechanism Involving a Radical Chain and Release of Tetrafluorobenzyne. Journal of the American Chemical Society, 1999, 121, 10327-10331.	13.7	74
64	Steric and Electronic Effects on the Insertion of a Rhodium Phosphine Complex into the Câ^'S Bond of Substituted Dibenzothiophenes. Homogeneous Model for the Hydrodesulfurization Process. Organometallics, 1996, 15, 2905-2917.	2.3	73
65	Carbonâ^'Carbon Bond Activation in Pt(0)â^'Diphenylacetylene Complexes Bearing Chelating P,N- and P,P-Ligands. Journal of the American Chemical Society, 2001, 123, 9718-9719.	13.7	73
66	Homogeneus models of thiophene HDS reactions. Selectivity in thiophene Cî—,S cleavage and thiophene reactions with dinuclear metal complexes. Polyhedron, 1997, 16, 3115-3128.	2.2	69
67	Evidence for Methane σ-Complexes in Reductive Elimination Reactions from Tpâ€~Rh(L)(CH3)H. Journal of the American Chemical Society, 1999, 121, 3974-3983.	13.7	69
68	Catalytic Arene H/D Exchange with Novel Rhodium and Iridium Complexes. Organometallics, 2012, 31, 1943-1952.	2.3	66
69	Sequential arene coordination and C–F insertion in the reactions of (η5-pentamethylcyclopentadienyl)rhodium complexes with hexafluorobenzene. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	65
70	Catalytic Carbonâ^'Carbon and Carbonâ^'Silicon Bond Activation and Functionalization by Nickel Complexes. Organometallics, 1999, 18, 4660-4668.	2.3	65
71	Alkane Coordination Selectivity in Hydrocarbon Activation by [Tpâ€~Rh(CNneopentyl)]: The Role of Alkane Complexes. Journal of the American Chemical Society, 2005, 127, 12315-12322.	13.7	64
72	Solvent Effects and Activation Parameters in the Competitive Cleavage of Câ^'CN and Câ^'H Bonds in 2-Methyl-3-Butenenitrile Using [(dippe)NiH] ₂ . Journal of the American Chemical Society, 2008, 130, 8548-8554.	13.7	64

#	Article	IF	CITATIONS
73	Thiophene carbon-sulfur bond cleavage by cobalt. Synthesis, structure, and dynamics of [(C5Me5)Co]2(C4H4S). Organometallics, 1992, 11, 2698-2700.	2.3	63
74	Hydrodesulfurization of Thiophene and Benzothiophene to Butane and Ethylbenzene by a Homogeneous Iridium Complex. Organometallics, 1997, 16, 1912-1919.	2.3	63
75	Cleavage of Carbonâ^'Carbon Bonds of Diphenylacetylene and Its Derivatives via Photolysis of Pt Complexes:Â Tuning the Câ^'C Bond Formation Energy toward Selective Câ^'C Bond Activation. Journal of the American Chemical Society, 2007, 129, 8729-8735.	13.7	63
76	Mechanism of formation of carbon-carbon bonds in the ring opening and coupling of thiophene by rhodium complex, (C5Me5)Rh(C2H4)2. Journal of the American Chemical Society, 1992, 114, 9851-9858.	13.7	62
77	Carbon–fluorine bond activation of perfluorinated arenes with Cp*2ZrH2. Journal of Organometallic Chemistry, 2002, 658, 132-140.	1.8	59
78	Regiochemical Selectivity in the Carbon-Sulfur Bond Cleavage of 2-Methylbenzothiophene: Synthesis, Characterization, and Mechanistic Study of Reversible Insertion into a C-S Bond. Journal of the American Chemical Society, 1995, 117, 11704-11709.	13.7	58
79	Mechanism of benzene loss from Tp'Rh(H)(Ph)(CN-neopentyl) in the presence of neopentyl isocyanide. Evidence for an associatively induced reductive elimination. Journal of the American Chemical Society, 1992, 114, 6087-6095.	13.7	56
80	Direct observation of .eta.2-arene complexes of [(C5Me5)Rh(PMe3)]. Journal of the American Chemical Society, 1989, 111, 8722-8723.	13.7	55
81	Carbon-Sulfur Bond Cleavage in Thiophene by Group 6 Metallocenes. Organometallics, 1994, 13, 4448-4452.	2.3	55
82	Evidence for the Existence of a Late-Metal Terminal Sulfido Complex. Journal of the American Chemical Society, 1999, 121, 4070-4071.	13.7	53
83	Catalytic Isomerization of 2-Methyl-3-butenenitrile by Nickel Systems Using Bis-diphosphinoferrocene Ligands:  Evidence for Hemilability. Organometallics, 2007, 26, 5766-5769.	2.3	53
84	Activation of Aromatic, Aliphatic, and Olefinic Carbon–Fluorine Bonds Using Cp*2HfH2. European Journal of Inorganic Chemistry, 2007, 2007, 2839-2847.	2.0	53
85	Dimerization of Thiophene to Give a Linear S(CH)8S Fragment with[(C5Me5)Rh(C2H4)2]. Angewandte Chemie International Edition in English, 1992, 31, 357-358.	4.4	52
86	Carbon-sulfur bond cleavage by cobalt. Reaction of Cpâ~Co(C2H4)2 with dibenzothiophene. Journal of Organometallic Chemistry, 1994, 472, 311-316.	1.8	52
87	Carbonâ~'Hydrogen and Carbonâ~'Carbon Bond Activation of Cyclopropane by a Hydridotris(pyrazolyl)borate Rhodium Complex. Organometallics, 1998, 17, 4484-4492.	2.3	52
88	Activation of Sulfur- and Nitrogen-Containing Heterocycles by a Dinuclear Iridium Complex. Organometallics, 1999, 18, 134-138.	2.3	52
89	Formation of Phenylene Oligomers Using Platinumâ^'Phosphine Complexes. Organometallics, 2001, 20, 2759-2766.	2.3	52
90	Formation of Tetrafluorobenzyne by β-Fluoride Elimination in Zirconium-Perfluorophenyl Complexes. Organometallics, 2002, 21, 727-731.	2.3	51

6

#	Article	IF	CITATIONS
91	η2-Coordination and Câ^'H Activation of Electron-Poor Arenes. Organometallics, 2002, 21, 5320-5333.	2.3	50
92	Ring migration reactions of (C5Me5)Rh(PMe3)H2. Evidence for .eta.3 slippage and metal-to-ring hydride migration. Organometallics, 1991, 10, 1577-1586.	2.3	49
93	Synthesis and structure of rhodium complexes containing a photolabile .eta.2-carbodiimide ligand. 1,3-Dipolar cycloaddition of phenyl azide to Tp'Rh(CNR)2 [Tp' = hydrotris(3,5-dimethylpyrazolyl)borate]. Organometallics, 1992, 11, 1496-1505.	2.3	49
94	Mechanistic Insights of a Concerted Metalation–Deprotonation Reaction with [Cp*RhCl ₂] ₂ . Organometallics, 2015, 34, 3400-3407.	2.3	48
95	Thermal and Photochemical Siliconâ^'Carbon Bond Activation in Donor-Stabilized Platinum(0)â^'Alkyne Complexes. Organometallics, 2002, 21, 1190-1196.	2.3	47
96	Rhodium–Carbon Bond Energies in Tp′Rh(CNneopentyl)(CH ₂ X)H: Quantifying Stabilization Effects in M–C Bonds. Journal of the American Chemical Society, 2013, 135, 6994-7004.	13.7	47
97	Mechanistic Insights on the Hydrodesulfurization of Biphenyl-2-thiol with Nickel Compounds. Journal of the American Chemical Society, 2009, 131, 4120-4126.	13.7	46
98	Palladium-Catalyzed Coupling Reactions of Biphenylene with Olefins, Arylboronic Acids, and Ketones Involving Câ^'C Bond Cleavage. Organometallics, 2001, 20, 2916-2919.	2.3	45
99	Selective Câ^'H Activation of Haloalkanes using a Rhodiumtrispyrazolylborate Complex. Journal of the American Chemical Society, 2009, 131, 10742-10752.	13.7	45
100	Thermodynamic Trends in Carbonâ^'Hydrogen Bond Activation in Nitriles and Chloroalkanes at Rhodium. Journal of Organic Chemistry, 2009, 74, 6907-6914.	3.2	45
101	Photochemical Câ^'H Activation and Ligand Exchange Reactions of CpRe(PPh3)2H2. Phosphine Dissociation Is Not Involved. Organometallics, 1999, 18, 1754-1760.	2.3	44
102	Câ^'H and Câ^'CN Bond Activation of Acetonitrile and Succinonitrile by [Tp′Rh(PR ₃)]. Organometallics, 2011, 30, 834-843.	2.3	44
103	Bond Cleavage Reactions in Oxygen and Nitrogen Heterocycles by a Rhodium Phosphine Complex. Organometallics, 1995, 14, 855-861.	2.3	43
104	Insertion of Elemental Sulfur and SO2into the Metalâ^'Hydride and Metalâ^'Carbon Bonds of Platinum Compounds. Organometallics, 1999, 18, 227-234.	2.3	43
105	Mechanistic investigation of vinylic carbon–fluorine bond activation of perfluorinated cycloalkenes using Cp*2ZrH2 and Cp*2ZrHF. Journal of Fluorine Chemistry, 2010, 131, 1122-1132.	1.7	42
106	Preparation and C-N cleavage reactions of bis[(dimethylphosphino)ethane]ruthenium isocyanide complexes. Organometallics, 1986, 5, 1823-1829.	2.3	41
107	Multiple .eta.2-arene coordination. Structure and isomerism of naphthalene complexes of rhodium phosphine [(C5Me5)Rh(PMe3)]. Organometallics, 1992, 11, 871-876.	2.3	39
108	Selective hydrogenation of the CO bond of ketones using Ni(0) complexes with a chelating bisphosphine. Journal of Molecular Catalysis A, 2009, 309, 1-11.	4.8	39

#	Article	IF	CITATIONS
109	Activation of B–H, Si–H, and C–F Bonds with Tp′Rh(PMe ₃) Complexes: Kinetics, Mechanis and Selectivity. Journal of the American Chemical Society, 2015, 137, 1258-1272.	m, _{13.7}	39
110	First examples of homogeneous hydrogenolysis of thiophene to 1-butanethiolate and ethylthioketene ligands: synthesis and reactivity of (.eta.4-C4H5S)ReH2(PPh3)2. Journal of the American Chemical Society, 1992, 114, 10767-10775.	13.7	38
111	Kinetic and Thermodynamic Selectivity of Intermolecular C–H Activation at [Tp′Rh(PMe ₃)]. How Does the Ancillary Ligand Affect the Metal–Carbon Bond Strength?. Journal of the American Chemical Society, 2013, 135, 16198-16212.	13.7	38
112	The activation of alkyl cyanides using a rhodiumtrispyrazolylborate complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6957-6962.	7.1	35
113	Synthesis, structure, and reductive elimination in the series Tp′Rh(PR3)(ArF)H; Determination of rhodium–carbon bond energies of fluoroaryl substituents. Dalton Transactions, 2010, 39, 10495.	3.3	35
114	C–S Bond Activation of Thioesters Using Platinum(0). Organometallics, 2011, 30, 5147-5154.	2.3	35
115	Catalytic Dehydrogenative C–C Coupling by a Pincer-Ligated Iridium Complex. Journal of the American Chemical Society, 2017, 139, 8977-8989.	13.7	35
116	Control of η2-arene coordination and C–H bond activation by cyclopentadienyl complexes of rhodium. Journal of the Chemical Society Chemical Communications, 1991, , 266-269.	2.0	34
117	Synthesis and structures of rhodium isocyanide complexes containing an .eta.2-hydrotris(3,5-dimethylpyrazolyl)borate ligand. Inorganic Chemistry, 1991, 30, 778-783.	4.0	34
118	Structure of Metallathiacycles:Â Planar vs Nonplanar Geometries. A Theoretical and Experimental Investigation. Organometallics, 1997, 16, 3819-3827.	2.3	34
119	Synthesis and Reactions of Cp-Linked Phosphine Complexes of Rhodium. Organometallics, 1998, 17, 3889-3899.	2.3	34
120	Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6939-6944.	7.1	33
121	Controlling the Selectivity for C–H and C–CN Bond Activation at Rhodium: A DFT Examination of Ligand Effects. Organometallics, 2011, 30, 3371-3377.	2.3	33
122	Chelating P,N versus P,P Ligands:  Differing Reactivity of Donor-Stabilized Pt(η2-PhC⋮CPh) Complexes Toward Diphenylacetylene. Organometallics, 2002, 21, 1118-1123.	2.3	32
123	Exploring Oxidation of Half-Sandwich Rhodium Complexes: Oxygen Atom Insertion into the Rhodium–Carbon Bond of κ ² -Coordinated 2-Phenylpyridine. Organometallics, 2014, 33, 4442-4448.	2.3	30
124	Rapid oxidative hydrogen evolution from a family of square-planar nickel hydride complexes. Chemical Science, 2016, 7, 117-127.	7.4	30
125	Chemical reduction of .eta.5-cyclopentadienyldicarbonylrhodium. Crystal and molecular structure of an anionic trinuclear rhodium cluster with "semi-triple-bridging" carbonyl ligands. Journal of the American Chemical Society, 1978, 100, 6770-6772.	13.7	28
126	Structure of [Ni(dippe)(μ-S)]2 and its reaction products. The nucleophilicity of the Ni2S2 fragment. Inorganica Chimica Acta, 2002, 330, 118-127.	2.4	28

#	Article	IF	CITATIONS
127	DFT Calculations of the Isomerization of 2-Methyl-3-butenenitrile by [Ni(bisphosphine)] in Relation to the DuPont Adiponitrile Process. Organometallics, 2011, 30, 547-555.	2.3	28
128	Reactivity Differences of Pt ⁰ Phosphine Complexes in Câ^'C Bond Activation of Asymmetric Acetylenes. Organometallics, 2009, 28, 6524-6530.	2.3	27
129	Câ^'CN vs Câ^'H Cleavage of Benzonitrile Using [(dippe)PtH] ₂ . Organometallics, 2011, 30, 1523-1529.	2.3	27
130	C–CN Bond Activation of Benzonitrile with [Rh ^{–I} (dippe)] ^{â^'} . Organometallics, 2011, 30, 5604-5610.	2.3	27
131	Probing the Carbon–Hydrogen Activation of Alkanes Following Photolysis of Tp′Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study. Journal of the American Chemical Society, 2018, 140, 1842-1854.	13.7	27
132	Preparation and characterization of rhodium pentamethylcyclopentadienyl isocyanide complexes, (C5Me5)Rh(CNR)2 and [(C5Me5)Rh(CNR)]2 complexes. Inorganic Chemistry, 1990, 29, 1505-1511.	4.0	26
133	Structural properties and inversion mechanisms of [Rh(dippe)(μ-SR)]2 complexes. Inorganica Chimica Acta, 2004, 357, 1836-1846.	2.4	26
134	The synthesis and structural properties of [M(dippe)(η2-C4H4S)] complexes of Pd and Pt and comparison with their Ni analog. Inorganica Chimica Acta, 2006, 359, 2798-2805.	2.4	26
135	Selectivity in the Oxidative Addition of Câ^'S Bonds of Substituted Thiophenes to the (C5Me5)Rh(PMe3) Fragment: A Comparison of Theory with Experiment. Inorganic Chemistry, 2008, 47, 10889-10894.	4.0	26
136	A Deeper Look into Thiophene Coordination Prior to Oxidative Addition of the Câ^'S Bond to Platinum(0): A Computational Study Using DFT and MO Methods. Organometallics, 2008, 27, 53-60.	2.3	26
137	Synthesis and X-ray crystallographic characterization of substituted aryl imines. Journal of Molecular Structure, 2011, 992, 33-38.	3.6	26
138	Carbonâ^'Sulfur Bond Activation of Dibenzothiophenes and Phenoxythiin by [Rh(dippe)(μ-H)] ₂ and [Rh ₂ (dippe) ₂ (î¼-Cl)(μ-H)]. Organometallics, 20 29, 4923-4931.	1 0, 3	25
139	C–H Activation of Terminal Alkynes by Tris-(3,5-dimethylpyrazolyl)boraterhodiumneopentylisocyanide: New Metal–Carbon Bond Strengths. Journal of the American Chemical Society, 2012, 134, 9276-9284.	13.7	25
140	Mechanistic Studies of Transition Metal-Mediated C–C Bond Activation. Topics in Current Chemistry, 2013, 346, 1-31.	4.0	25
141	Synthesis, Characterization, and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes. Organometallics, 2016, 35, 3124-3131.	2.3	24
142	Photochemical C(<i>sp</i>)–C(<i>sp</i> ²) Bond Activation in Phosphaalkynes: A New Route to Reactive Terminal Cyaphido Complexes L _{<i>n</i>} M–C≡P. Journal of the American Chemical Society, 2021, 143, 19365-19373.	13.7	24
143	Carbonâ^'Selenium Bond Cleavage by a Rhodium Complex. Organometallics, 1997, 16, 2751-2753.	2.3	23
144	An Uncanny Dehydrogenation Mechanism: Polar Bond Control over Stepwise or Concerted Transition States. Inorganic Chemistry, 2017, 56, 5519-5524.	4.0	23

#	Article	IF	CITATIONS
145	Oxidative Addition of the Câ^'S Bond of Thiophene to the (C ₅ Me ₅)Rh(PMe ₃) Fragment: A Theoretical Study Revisited. Organometallics, 2008, 27, 3666-3670.	2.3	22
146	Synthesis, characterization, and C–H/C–C cleavage reactions of two rhodium–trispyrazolylborate dihydrides. Inorganica Chimica Acta, 2009, 362, 4416-4421.	2.4	22
147	Carbon–hydrogen bond activation of chloroalkanes by a rhodium trispyrazolylborate complex. Polyhedron, 2004, 23, 413-417.	2.2	21
148	Predicting Selectivity in Oxidative Addition of C–S Bonds of Substituted Thiophenes to a Platinum(0) Fragment: An Experimental and Theoretical Study. Organometallics, 2011, 30, 4578-4588.	2.3	21
149	Oxidative Addition of Chlorohydrocarbons to a Rhodium Tris(pyrazolyl)borate Complex. Organometallics, 2015, 34, 1552-1566.	2.3	21
150	Understanding Selectivity in the Oxidative Addition of the Carbonâ^'Sulfur Bonds of 2-Cyanothiophene to Pt(0). Inorganic Chemistry, 2008, 47, 4596-4604.	4.0	20
151	Carbon–Oxygen Bond Activation in Esters by Platinum(0): Cleavage of the Less Reactive Bond. Organometallics, 2012, 31, 5018-5024.	2.3	20
152	Crystal Structure and Chemical Reactivity of Heme Phenoxide Adducts. Journal of Coordination Chemistry, 1991, 23, 351-359.	2.2	19
153	Synthesis and energetics of Tp′Rh[P(OMe) ₃](R)H: a systematic investigation of ligand effects on C–H activation at rhodium. Chemical Science, 2014, 5, 804-812.	7.4	19
154	C–CN Bond Cleavage Using Palladium Supported by a Dippe Ligand. Organometallics, 2016, 35, 2010-2013.	2.3	19
155	Insertion of SO2into the Metalâ^'Carbon Bonds of Rhodium and Iridium Compounds, and Reactivity of the SO2-Inserted Species. Organometallics, 1998, 17, 1420-1425.	2.3	18
156	Cleavage of the Carbonâ^'Sulfur Bonds in Thiophenes by a Binuclear Ruthenium Complex. Organometallics, 1999, 18, 1786-1790.	2.3	18
157	Room-Temperature Carbon–Sulfur Bond Activation by a Reactive (dippe)Pd Fragment. Organometallics, 2015, 34, 1716-1724.	2.3	18
158	Determination of Rhodium–Alkoxide Bond Strengths in Tp′Rh(PMe ₃)(OR)H. Inorganic Chemistry, 2016, 55, 9482-9491.	4.0	17
159	Reversible Concerted Metalation–Deprotonation C–H Bond Activation by [Cp*RhCl ₂] ₂ . Journal of Organic Chemistry, 2019, 84, 12960-12965.	3.2	17
160	Synthesis, structure and reactivity of [Ir(dippe)(μ-Cl)]2, [Ir(dippe)2][Ir(dippe)Cl2] and [Ir(dippe)2]Cl. Polyhedron, 2004, 23, 2959-2965.	2.2	16
161	C–S bond activation of thioethers using (dippe)Pt(NBE)2. Polyhedron, 2013, 58, 99-105.	2.2	16
162	Addition of C–C and C–H bonds by pincer-iridium complexes: a combined experimental and computational study. Dalton Transactions, 2014, 43, 16354-16365.	3.3	16

#	Article	IF	CITATIONS
163	Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water. Journal of Physical Chemistry B, 2016, 120, 12911-12919.	2.6	16
164	Upgrading of Ethanol to <i>n</i> -Butanol via a Ruthenium Catalyst in Aqueous Solution. Organometallics, 2021, 40, 1884-1888.	2.3	16
165	SYNTHETIC CHEMISTRY: The Key to Successful Organic Synthesis Is Science, 2002, 295, 289-290.	12.6	15
166	Making M–CN bonds from M–Cl in (PONOP)M and (dippe)Ni systems (M=Ni, Pd, and Pt) using t-BuNC. Inorganica Chimica Acta, 2011, 379, 109-114.	2.4	15
167	Kinetics and mechanism of dealkylation of coordinated isocyanide in Fe(PMe3)2(t-BuNC)3. Canadian Journal of Chemistry, 2005, 83, 626-633.	1.1	14
168	Synthesis, characterization, and reactivity of Cp*Rh(III) complexes having functional N,O chelate ligands. Journal of Organometallic Chemistry, 2017, 847, 28-32.	1.8	14
169	Bond cleavage reactions in substituted thiophenes by a rhodium complex. Inorganica Chimica Acta, 2008, 361, 3263-3270.	2.4	13
170	Carbonâ^'Sulfur Bond Cleavage of Methyl-Substituted Thiophenes with Iridium(III). Organometallics, 2009, 28, 2661-2667.	2.3	13
171	Synthesis, Characterization, and Reactivity of a Rhenium Complex with a Corannulene-Based Ligand. Organometallics, 2003, 22, 4829-4832.	2.3	11
172	Mechanistic Insights in the Exchange of Arylthiolate Groups in Aryl(arylthiolato)palladium Complexes Supported by a Dippe Ligand. Organometallics, 2015, 34, 4574-4580.	2.3	11
173	Effect of Carboxylate Ligands on Alkane Dehydrogenation with (^{<i>dm</i>} Phebox)Ir Complexes. ACS Catalysis, 2018, 8, 2326-2329.	11.2	11
174	Alkane Complexes as Intermediates in C—H Bond Activation Reactions. ACS Symposium Series, 2004, , 56-69.	0.5	10
175	C(<i>sp</i> ²)–F Oxidative Addition of Fluorinated Aryl Ketones by ^{iPr} PCPIr. Organometallics, 2017, 36, 3125-3134.	2.3	10
176	Methane Is the Best Substrate for C(sp ³)–H Activation with Cp*(PMe ₃)Co(Me)(OTf): A Density Functional Theory Study. Organometallics, 2015, 34, 4032-4038.	2.3	9
177	Investigation of C–C Bond Activation of sp–sp ² C–C Bonds of Acetylene Derivatives via Photolysis of Pt Complexes. Organometallics, 2015, 34, 2233-2239.	2.3	9
178	Formation of 5-membered metallacycles at iPrPCPIr by C–H, O–H, and C–CO bond cleavage. Polyhedron, 2016, 116, 38-46.	2.2	9
179	Reactivity of iPrPCPIrH4 with para-benzoquinones. Polyhedron, 2018, 143, 209-214.	2.2	9
180	Markovnikov-Selective Hydroboration of Olefins Catalyzed by a Copper N-Heterocyclic Carbene Complex. Organometallics, 2019, 38, 3322-3326.	2.3	9

#	Article	IF	CITATIONS
181	Unusual lithium coordinated platinum and rhodium hydride dimers. Inorganica Chimica Acta, 2010, 363, 517-522.	2.4	8
182	Synthesis and characterization of a series of rhodium, iridium, and ruthenium isocyanide complexes. Inorganica Chimica Acta, 2013, 407, 131-138.	2.4	8
183	Examination of a dicationic rhodium methyl aquo complex. Inorganica Chimica Acta, 2013, 397, 140-143.	2.4	8
184	Coordination or Oxidative Addition? Activation of N–H with [Tp′Rh(PMe ₃)]. Inorganic Chemistry, 2019, 58, 557-566.	4.0	7
185	An Iron-Based Dehydration Catalyst for Selective Formation of Styrene. ACS Catalysis, 2021, 11, 10885-10891.	11.2	7
186	Nickel(0) Addition to a Disulfide Bond. Journal of Chemical Crystallography, 2014, 44, 15-19.	1.1	6
187	Bisindolines from the reaction of 3,5-dimethoxyaniline with vicinal diones. RSC Advances, 2014, 4, 1401-1411.	3.6	6
188	Electrophilic C–H activation of benzene with a Shilov-inspired rhodium(III) diimine complex. Journal of Organometallic Chemistry, 2015, 793, 192-199.	1.8	6
189	Synthesis and characterization of cationic rhodium(I) dicarbonyl complexes. Inorganica Chimica Acta, 2011, 367, 108-113.	2.4	5
190	Lewis Acid Assisted C–CN Cleavage of Benzonitrile Using [(dippe)NiH]2. Synlett, 2018, 29, 747-753.	1.8	5
191	Hydrogenation/Dehydrogenation of Unsaturated Bonds with Iron Pincer Catalysis. Topics in Organometallic Chemistry, 2018, , 141-174.	0.7	5
192	Bis[μ-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzenethiolato]bis[(η4-3,5-cyclooctadiene)rhodium(I)]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2204-m2206.	0.2	4
193	Chemistry of Mn and Co Pincer Compounds. , 2018, , 491-518.		4
194	Bisoxazoline-pincer ligated cobalt-catalyzed hydrogenation of alkenes. Polyhedron, 2020, 180, 114416.	2.2	3
195	Firstâ€Row Transition Metals Complexes with Fused Oxazolidine (FOX) Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1442-1448.	1.2	3
196	Dinuclear Ir(III) Complex with an Unusual η1:η3-allylic Bridging Ligand from the Double C–H Activation of 2,5-Dimethylthiophene. Journal of Chemical Crystallography, 2011, 41, 829-833.	1.1	2
197	Nitrile coordination to rhodium does not lead to C—H activation. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 850-852.	0.5	2
198	Unexpected Solvent Effects in the Isomerization of ^{iPr} PCPIr(η ² â€PhC≡CPh) to a 1â€iridaindene. Israel Journal of Chemistry, 2017, 57, 968-974.	2.3	2

#	Article	IF	CITATIONS
199	Photolysis of Tp′Rh(CNneopentyl)(PhNCNneopentyl) in the presence of ketones and esters: kinetic and thermodynamic selectivity for activation of different aliphatic C–H bonds. Dalton Transactions, 2019, 48, 10945-10952.	3.3	2
200	Ironâ€Catalyzed Dehydrogenation of Alcohols Using Benzoquinones as Electrochemically Regenerable Mediators. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
201	The functionalization of benzene by boranes using trispyrazolylborate complexes. Polyhedron, 2021, 197, 115042.	2.2	1
202	Crystal structure of chloridobis[(1,2,5,6-î·)-cycloocta-1,5-diene]iridium(I). Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 273-277.	0.5	1
203	Cleavage of the Carbon—Carbon Bond in Biphenylene Using Transition Metals. ChemInform, 2003, 34, no.	0.0	0
204	Development of sterically hindered siloxide-functionalized polyoxotungstates for the complexation of 5d-metals. Dalton Transactions, 2021, 50, 4300-4310.	3.3	0
205	Synthesis and molecular structure of half-sandwich ruthenium(II) complexes containing pyrazolyl ligands: Solvent induced geometrical change in κ2-scorpionate supported complex. Journal of Molecular Structure, 2022, 1251, 132005.	3.6	0
206	Iridium(I)– and Rhodium(I)–Olefin Complexes Containing an α-Diimine Supporting Ligand. Organometallics, 0, , .	2.3	0
207	Selectivity in the activation of C H bonds by rhodium and iridium complexes. Advances in Organometallic Chemistry, 2022, , .	1.0	0