John Giesy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106090/publications.pdf

Version: 2024-02-01

829 papers 48,385 citations

100 h-index 175 g-index

840 all docs 840 docs citations

840 times ranked 28109 citing authors

#	Article	IF	Citations
1	Assessment of combined exposures to multiple chemicals: pesticides, metals, and polycyclic aromatic hydrocarbons levels in fig fruits. International Journal of Environmental Analytical Chemistry, 2024, 104, 827-846.	3.3	2
2	Effect-directed identification of novel aryl hydrocarbon receptor-active aromatic compounds in coastal sediments collected from a highly industrialized area. Science of the Total Environment, 2022, 803, 149969.	8.0	10
3	RNA metabarcoding helps reveal zooplankton community response to environmental stressors. Environmental Pollution, 2022, 292, 118446.	7.5	2
4	Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes. Environmental Pollution, 2022, 294, 118516.	7.5	22
5	Microfibers Released into the Air from a Household Tumble Dryer. Environmental Science and Technology Letters, 2022, 9, 120-126.	8.7	37
6	Lavandula dentata L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. Plants, 2022, 11, 311.	3.5	28
7	Identification of novel polar aryl hydrocarbon receptor agonists accumulated in liver of black-tailed gulls in Korea using advanced effect-directed analysis. Journal of Hazardous Materials, 2022, 429, 128305.	12.4	5
8	Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules, 2022, 27, 1136.	3.8	34
9	Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish. Ecotoxicology and Environmental Safety, 2022, 232, 113287.	6.0	3
10	Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L Molecules, 2022, 27, 2282.	3.8	17
11	A framework for assessing freshwater vulnerability along China's Belt and Road Initiative: An exposure, sensitivity and adaptive capacity approach. Environmental Science and Policy, 2022, 132, 247-261.	4.9	1
12	Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. Science of the Total Environment, 2022, 827, 154271.	8.0	18
13	Effects of in situ experimental selenium exposure on finescale dace (Phoxinus neogaeus) gut microbiome. Environmental Research, 2022, 212, 113151.	7.5	5
14	Essential Oils from Leaves of Juniperus thurifera L., Exhibiting Antioxidant, Antifungal and Antibacterial Activities against Antibiotic-Resistant Microbes. Horticulturae, 2022, 8, 321.	2.8	12
15	Identification of AhR agonists in sediments of the Bohai and Yellow Seas using advanced effect-directed analysis and in silico prediction. Journal of Hazardous Materials, 2022, 435, 128908.	12.4	4
16	Best available technique for the recovery of marine benthic communities in a gravel shore after the oil spill: A mesocosm-based sediment triad assessment. Journal of Hazardous Materials, 2022, 435, 128945.	12.4	2
17	A novel passive sampling and sequential extraction approach to investigate desorption kinetics of emerging organic contaminants at the sedimentâ" water interface. Water Research, 2022, 217, 118455.	11.3	7
18	Comparison of primary and secondary sludge carbon sources derived from hydrolysis or acidogenesis for nitrate reduction and denitrification kinetics: Organics utilization and microbial community shift. Environmental Research, 2022, 212, 113403.	7.5	12

#	Article	IF	Citations
19	Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability. Sustainability, 2022, 14, 6689.	3.2	1
20	Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. Environmental Science and Ecotechnology, 2022, 12, 100198.	13.5	14
21	Next generation per- and poly-fluoroalkyl substances: Status and trends, aquatic toxicity, and risk assessment., 2022, 1, 117-131.		45
22	miR-155 influences cell-mediated immunity in Balb/c mice treated with aflatoxin M ₁ . Drug and Chemical Toxicology, 2021, 44, 39-46.	2.3	7
23	Identification of potential toxicants in sediments from an industrialized area in Pohang, South Korea: Application of a cell viability assay of microalgae using flow cytometry. Journal of Hazardous Materials, 2021, 405, 124230.	12.4	14
24	Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). Journal of Hazardous Materials, 2021, 410, 124671.	12.4	25
25	Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Science of the Total Environment, 2021, 764, 142319.	8.0	97
26	Residues levels of pesticides in walnuts of Iran and associated health risks. Human and Ecological Risk Assessment (HERA), 2021, 27, 191-204.	3.4	18
27	Ractopamine and Other Growth-Promoting Compounds in Beef Cattle Operations: Fate and Transport in Feedlot Pens and Adjacent Environments. Environmental Science & Environmental Science & 2021, 55, 1730-1739.	10.0	17
28	Optimization of QuEChERS extraction of steroid hormones from infant formulae for mass spectrometric analysis. Toxicological and Environmental Chemistry, 2021, 103, 1-17.	1.2	6
29	Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment. Environmental Science and Pollution Research, 2021, 28, 39723-39741.	5.3	25
30	Fighting against the second wave of COVID-19: Can honeybee products help protect against the pandemic?. Saudi Journal of Biological Sciences, 2021, 28, 1519-1527.	3.8	37
31	Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism. Ecotoxicology and Environmental Safety, 2021, 213, 112041.	6.0	82
32	Transmission of SARS-CoV-2 virus and ambient temperature: a critical review. Environmental Science and Pollution Research, 2021, 28, 37051-37059.	5.3	6
33	Environmental DNA of preservative ethanol performed better than water samples in detecting macroinvertebrate diversity using metabarcoding. Diversity and Distributions, 2021, 27, 1989-2002.	4.1	11
34	Difference in performance and mechanism for methylene blue when TiO2 nanoparticles are converted to nanotubes. Journal of Cleaner Production, 2021, 297, 126498.	9.3	15
35	Pesticides, metals, and polycyclic aromatic hydrocarbons in date fruits: A probabilistic assessment of risk to health of Iranian consumers. Journal of Food Composition and Analysis, 2021, 98, 103815.	3.9	24
36	Remodeling of Arctic char (<i>Salvelinus alpinus</i>) lipidome under a stimulated scenario of Arctic warming. Global Change Biology, 2021, 27, 3282-3298.	9.5	3

#	Article	IF	CITATIONS
37	In memory of Dr. Doris Au (29 April 1965–7 February 2020). Marine Pollution Bulletin, 2021, 167, 112278.	5.0	0
38	Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. Environmental Pollution, 2021, 279, 116942.	7.5	10
39	Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. Science of the Total Environment, 2021, 772, 144957.	8.0	12
40	Effects of acute exposure to microcystins on hypothalamic-pituitary-adrenal (HPA), -gonad (HPG) and -thyroid (HPT) axes of female rats. Science of the Total Environment, 2021, 778, 145196.	8.0	29
41	Ecotoxicological risk assessment of metal cocktails based on maximum cumulative ratio during multi-generational exposures. Water Research, 2021, 200, 117274.	11.3	8
42	Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening. Science of the Total Environment, 2021, 779, 146566.	8.0	15
43	Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake. Aquatic Toxicology, 2021, 236, 105847.	4.0	2
44	Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. Science of the Total Environment, 2021, 783, 146838.	8.0	42
45	Toxicokinetic Models for Bioconcentration of Organic Contaminants in Two Life Stages of White Sturgeon (<i>Acipenser transmontanus</i>). Environmental Science & Eamp; Technology, 2021, 55, 11590-11600.	10.0	5
46	Health status of fathead minnow (Pimephales promelas) populations in a municipal wastewater effluent-dominated stream in the Canadian prairies, Wascana Creek, Saskatchewan. Aquatic Toxicology, 2021, 238, 105933.	4.0	3
47	Prefertilization Exposure of Rainbow Trout Eggs to Per―and Polyfluoroalkyl Substances to Simulate Accumulation During Oogenesis. Environmental Toxicology and Chemistry, 2021, 40, 3159-3165.	4.3	2
48	Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. Environmental Science & Envir	10.0	6
49	Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada. Journal of Environmental Sciences, 2021, 107, 218-229.	6.1	91
50	Reproductive toxicity and metabolic perturbations in male rats exposed to boron. Science of the Total Environment, 2021, 785, 147370.	8.0	14
51	Exposure to organophosphate esters in elderly people: Relationships of OPE body burdens with indoor air and dust concentrations and food consumption. Environment International, 2021, 157, 106803.	10.0	33
52	Insights into the Influence of Natural Retinoic Acids on Imposex Induction in Female Marine Gastropods in the Coastal Environment. Environmental Science and Technology Letters, 2021, 8, 1002-1008.	8.7	3
53	Temporal Patterns of Bacterial and Viral Communities during Algae Blooms of a Reservoir in Macau. Toxins, 2021, 13, 894.	3.4	2
54	Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environmental Science and Pollution Research, 2020, 27, 19004-19015.	5. 3	36

#	Article	lF	CITATIONS
55	Transcriptomic responses of Artemia salina exposed to an environmentally relevant dose of Alexandrium minutum cells or Gonyautoxin2/3. Chemosphere, 2020, 238, 124661.	8.2	15
56	Halogenated flame retardants in sediments from the Upper Laurentian Great Lakes: Implications to long-range transport and evidence of long-term transformation. Journal of Hazardous Materials, 2020, 384, 121346.	12.4	13
57	Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis. Science of the Total Environment, 2020, 703, 134764.	8.0	82
58	A novel Mg(OH) < sub>2 < /sub> binding layer-based DGT technique for measuring phosphorus in water and sediment. Environmental Sciences: Processes and Impacts, 2020, 22, 340-349.	3.5	0
59	Synthesis of Fe3O4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb(V) removal from water. Science of the Total Environment, 2020, 710, 136302.	8.0	51
60	Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada. Aquatic Toxicology, 2020, 229, 105658.	4.0	16
61	In vitro-in vivo and cross-life stage extrapolation of uptake and biotransformation of benzo[a]pyrene in the fathead minnow (Pimephales promelas). Aquatic Toxicology, 2020, 228, 105616.	4.0	8
62	Structures of Endocrine-Disrupting Chemicals Determine Binding to and Activation of the Estrogen Receptor $\hat{l}\pm$ and Androgen Receptor. Environmental Science & Environmenta	10.0	45
63	Exposure of zebrafish to environmentally relevant concentrations of mercury during early life stages impairs subsequent reproduction in adults but can be recovered in offspring. Aquatic Toxicology, 2020, 229, 105655.	4.0	9
64	Concentrations of Metals in Fishes from the Athabasca and Slave Rivers of Northern Canada. Environmental Toxicology and Chemistry, 2020, 39, 2180-2195.	4.3	4
65	Tissue distribution, bioaccumulation, and carcinogenic risk of polycyclic aromatic hydrocarbons in aquatic organisms from Lake Chaohu, China. Science of the Total Environment, 2020, 749, 141577.	8.0	21
66	Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. Environmental Pollution, 2020, 265, 114838.	7.5	43
67	Metals and PFAS in stormwater and surface runoff in a semi-arid Canadian city subject to large variations in temperature among seasons. Environmental Science and Pollution Research, 2020, 27, 18232-18241.	5.3	27
68	Light, but Not Nutrients, Drives Seasonal Congruence of Taxonomic and Functional Diversity of Phytoplankton in a Eutrophic Highland Lake in China. Frontiers in Plant Science, 2020, 11, 179.	3.6	10
69	Multiple Bioassays and Targeted and Nontargeted Analyses to Characterize Potential Toxicological Effects Associated with Sediments of Masan Bay: Focusing on AhR-Mediated Potency. Environmental Science & Environmental Scien	10.0	31
70	Mechanisms of pH-Dependent Uptake of Ionizable Organic Chemicals by Fish from Oil Sands Process-Affected Water (OSPW). Environmental Science & Echnology, 2020, 54, 9547-9555.	10.0	8
71	Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows. Chemosphere, 2020, 249, 126073.	8.2	7
72	Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environment International, 2020, 136, 105454.	10.0	203

#	Article	IF	CITATIONS
73	Long-term trends of persistent toxic substances and potential toxicities in sediments along the west coast of South Korea. Marine Pollution Bulletin, 2020, 151, 110821.	5.0	10
74	Integrated assessment of west coast of South Korea by use of benthic bacterial community structure as determined by eDNA, concentrations of contaminants, and in vitro bioassays. Environment International, 2020, 137, 105569.	10.0	5
75	Investigation of eluted characteristics of fulvic acids using differential spectroscopy combined with Gaussian deconvolution and spectral indices. Environmental Science and Pollution Research, 2020, 27, 11000-11011.	5.3	1
76	Current understanding of potential ecological risks of retinoic acids and their metabolites in aquatic environments. Environment International, 2020, 136, 105464.	10.0	23
77	Differential responses of gut microbiota of male and female fathead minnow (Pimephales promelas) to a short-term environmentally-relevant, aqueous exposure to benzo[a]pyrene. Chemosphere, 2020, 252, 126461.	8.2	37
78	Effects of tris (2-chloroethyl) phosphate (TCEP) on growth, reproduction and gene transcription in the protozoan Tetrahymena thermophila. Aquatic Toxicology, 2020, 222, 105477.	4.0	15
79	Occurrence, toxicity and ecological risk of larvicidal oil in the coastal marine ecosystem of Hong Kong. Marine Pollution Bulletin, 2020, 156, 111178.	5.0	3
80	Three decades of changes in water environment of a large freshwater Lake and its relationship with socio-economic indicators. Journal of Environmental Sciences, 2019, 77, 156-166.	6.1	25
81	Spectroscopic analyses combined with Gaussian and Coats-Redfern models to investigate the characteristics and pyrolysis kinetics of sugarcane residue-derived biochars. Journal of Cleaner Production, 2019, 237, 117855.	9.3	40
82	Comparison of the Effects of Extraction Techniques on Mass Spectrometry Profiles of Dissolved Organic Compounds in Oil Sand Process-Affected Water. Energy & Energy & 2019, 33, 7001-7008.	5.1	8
83	Newly Identified AhR-Active Compounds in the Sediments of an Industrial Area Using Effect-Directed Analysis. Environmental Science & Eamp; Technology, 2019, 53, 10043-10052.	10.0	47
84	Effects of fulvic acid on aggregation, sedimentation, and adsorption of Fe3O4 magnetic nanoparticles. Environmental Science and Pollution Research, 2019, 26, 21463-21474.	5.3	13
85	Spatial distribution and hazard of halogenated flame retardants and polychlorinated biphenyls to common kingfisher (Alcedo atthis) from a region of South China affected by electronic waste recycling. Environment International, 2019, 130, 104952.	10.0	21
86	Shape-dependent toxicity of alumina nanoparticles in rat astrocytes. Science of the Total Environment, 2019, 690, 158-166.	8.0	58
87	Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis. Environmental Science & Environmental Scie	10.0	66
88	Underlying mechanisms of reproductive toxicity caused by multigenerational exposure of 2, bromo-4, 6-dinitroaniline (BDNA) to Zebrafish (Danio rerio) at environmental relevant levels. Aquatic Toxicology, 2019, 216, 105285.	4.0	16
89	Major AhR-active chemicals in sediments of Lake Sihwa, South Korea: Application of effect-directed analysis combined with full-scan screening analysis. Environment International, 2019, 133, 105199.	10.0	25
90	Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. Environment International, 2019, 133, 105231.	10.0	48

#	Article	IF	Citations
91	Receptor-mediated potencies of polycyclic aromatic hydrocarbons in urban sediments: comparisons of toxic equivalency risk assessment. International Journal of Environmental Science and Technology, 2019, 16, 6405-6418.	3.5	3
92	PM2.5 bound phthalates in four metropolitan cities of China: Concentration, seasonal pattern and health risk via inhalation. Science of the Total Environment, 2019, 696, 133982.	8.0	34
93	Exposure to Al ₂ O ₃ nanoparticles facilitates conjugative transfer of antibiotic resistance genes from <i>Escherichia coli</i> to <i>Streptomyces</i> Nanotoxicology, 2019, 13, 1422-1436.	3.0	27
94	Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids. Science of the Total Environment, 2019, 692, 660-668.	8.0	16
95	Efficient removal of both antimonite (Sb(<scp>iii</scp>)) and antimonate (Sb(<scp>v</scp>)) from environmental water using titanate nanotubes and nanoparticles. Environmental Science: Nano, 2019, 6, 834-850.	4.3	56
96	Characterization of phosphorus forms in a Eutrophic Lake, China. Science of the Total Environment, 2019, 659, 1437-1447.	8.0	38
97	Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae, and baby foods in Iran: An assessment of risk. Food and Chemical Toxicology, 2019, 131, 110640.	3.6	30
98	Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor \hat{l}_{\pm} (PPAR \hat{l}_{\pm}). Ecotoxicology and Environmental Safety, 2019, 181, 164-171.	6.0	30
99	Tissue-based assessment of hazard posed by mercury and selenium to wild fishes in two shallow Chinese lakes. Environmental Science and Pollution Research, 2019, 26, 15989-15999.	5.3	4
100	Correlations between slow pyrolysis characteristics and organic carbon structure of aquatic plant biomass. Environmental Science and Pollution Research, 2019, 26, 17555-17566.	5.3	2
101	Molecular Initiating Events of Bisphenols on Androgen Receptor-Mediated Pathways Provide Guidelines for <i>in Silico</i> Screening and Design of Substitute Compounds. Environmental Science and Technology Letters, 2019, 6, 205-210.	8.7	19
102	Sublethal effects of chronic exposure to chlorpyrifos or imidacloprid insecticides or their binary mixtures on <scp><i>Culex pipiens</i>mosquitoes. Physiological Entomology, 2019, 44, 123-132.</scp>	1.5	7
103	Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago) Tj ETQq1 1 0.784	314 rgBT	/Overlock 1 104
104	Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China. Science of the Total Environment, 2019, 672, 883-892.	8.0	45
105	Aryl hydrocarbon receptor-mediated potencies in field-deployed plastics vary by type of polymer. Environmental Science and Pollution Research, 2019, 26, 9079-9088.	5.3	12
106	Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. Journal of Hazardous Materials, 2019, 369, 494-502.	12.4	121
107	Characterization and sources of dissolved and particulate phosphorus in 10 freshwater lakes with different trophic statuses in China by solution ³¹ P nuclear magnetic resonance spectroscopy. Ecological Research, 2019, 34, 106-118.	1.5	10
108	Pore-level visual analysis of heavy oil recovery using chemical-assisted waterflooding process – Use of a new chemical agent. Fuel, 2019, 239, 202-218.	6.4	37

#	Article	IF	CITATIONS
109	Biological toxicity estimates show involvement of a wider range of toxic compounds in sediments from Durban, South Africa than indicated from instrumental analyses. Marine Pollution Bulletin, 2019, 138, 49-57.	5.0	9
110	Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis. Science of the Total Environment, 2019, 650, 1599-1612.	8.0	36
111	Cellular alterations in midgut cells of honey bee workers (Apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Science of the Total Environment, 2019, 651, 1356-1367.	8.0	45
112	Influence of Environmental Variables on Benthic Macroinvertebrate Communities in a Shallow Eutrophic Lowland Lake (Ge Lake, China). Tecnologia Y Ciencias Del Agua, 2019, 10, 88-119.	0.3	1
113	Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. Journal of Environmental Sciences, 2018, 74, 116-125.	6.1	34
114	Methylated PACs are more potent than their parent compounds: A study of aryl hydrocarbon receptor–mediated activity, degradability, and mixture interactions in the H4IIEâ€∢i>luc⟨ i⟩ assay. Environmental Toxicology and Chemistry, 2018, 37, 1409-1419.	4.3	44
115	Temporal and spatial differences in deposition of organic matter and black carbon in Lake Michigan sediments over the period 1850–2010. Journal of Great Lakes Research, 2018, 44, 705-715.	1.9	14
116	Characterization of endocrine disruption potentials of coastal sediments of Taean, Korea employing H295R and MVLN assays–Reconnaissance at 5 years after Hebei Spirit oil spill. Marine Pollution Bulletin, 2018, 127, 264-272.	5.0	10
117	Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicology and Environmental Safety, 2018, 158, 123-130.	6.0	33
118	Model for Predicting Toxicities of Metals and Metalloids in Coastal Marine Environments Worldwide. Environmental Science & Env	10.0	32
119	Legacy polychlorinated organic pollutants in the sediment of the Great Lakes. Journal of Great Lakes Research, 2018, 44, 682-692.	1.9	23
120	Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrasonics Sonochemistry, 2018, 45, 213-222.	8.2	41
121	Amendment of water quality standards in China: viewpoint on strategic considerations. Environmental Science and Pollution Research, 2018, 25, 3078-3092.	5.3	32
122	Regulation of engineered nanomaterials: current challenges, insights and future directions. Environmental Science and Pollution Research, 2018, 25, 3060-3077.	5.3	66
123	Integrated in silico and in vivo approaches to investigate effects of BDEâ€99 mediated by the nuclear receptors on developing zebrafish. Environmental Toxicology and Chemistry, 2018, 37, 780-787.	4.3	14
124	Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan, China. Microchemical Journal, 2018, 137, 181-189.	4.5	59
125	In vitro tools for the toxicological evaluation of sediments and dredged materials: intra- and inter-laboratory comparisons of chemical and bioanalytical methods. Environmental Science and Pollution Research, 2018, 25, 4037-4050.	5.3	7
126	Generalized concentration addition accurately predicts estrogenic potentials of mixtures and environmental samples containing partial agonists. Toxicology in Vitro, 2018, 46, 294-303.	2.4	17

#	Article	IF	Citations
127	The dose makes the poison. Science of the Total Environment, 2018, 621, 649-653.	8.0	43
128	Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis) Tj ETQqC	0.0 ₁ gBT	/Oygrlock 10
129	Water–effect ratio of copper and its application on setting site-specific water quality criteria for protecting marine ecosystems of Hong Kong. Environmental Science and Pollution Research, 2018, 25, 3170-3182.	5.3	4
130	Perfluorobutanesulfonate Exposure Causes Durable and Transgenerational Dysbiosis of Gut Microbiota in Marine Medaka. Environmental Science and Technology Letters, 2018, 5, 731-738.	8.7	50
131	Using dual isotopes and a Bayesian isotope mixing model to evaluate sources of nitrate of Tai Lake, China. Environmental Science and Pollution Research, 2018, 25, 32631-32639.	5.3	19
132	In vitro assessment of endocrine disrupting potential of organic fractions extracted from hydraulic fracturing flowback and produced water (HF-FPW). Environment International, 2018, 121, 824-831.	10.0	19
133	Down-Regulation of <i>hspb9</i> and <i>hspb11</i> Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. Environmental Science & Emp; Technology, 2018, 52, 12829-12840.	10.0	7
134	Beekeeping and the Need for Pollination from an Agricultural Perspective in Egypt. Bee World, 2018, 95, 107-112.	0.8	28
135	Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes $\hat{a} \in \text{``Superior'}$, Huron, and Michigan. Environmental Pollution, 2018, 236, 373-381.	7.5	49
136	Combining High-Throughput Sequencing of <i>seda</i> DNA and Traditional Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial Communities. Environmental Science & Emp; Technology, 2018, 52, 6842-6853.	10.0	45
137	Accumulation rates, focusing factors, and chronologies from depth profiles of 210Pb and 137Cs in sediments of the Laurentian Great Lakes. Journal of Great Lakes Research, 2018, 44, 693-704.	1.9	25
138	The effect of IPC formulation on bitumen properties – An experimental study. Journal of Petroleum Science and Engineering, 2018, 170, 525-540.	4.2	0
139	Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms. Science of the Total Environment, 2018, 644, 1277-1285.	8.0	59
140	Immunotoxicity of aflatoxin M $<$ sub $>1sub>: as a potent suppressor of innate and acquired immune systems in a subacute study. Journal of the Science of Food and Agriculture, 2018, 98, 5884-5892.$	3.5	31
141	Chemical-, site-, and taxa-dependent benthic community health in coastal areas of the Bohai Sea and northern Yellow Sea: A sediment quality triad approach. Science of the Total Environment, 2018, 645, 743-752.	8.0	29
142	Genomic instability in adult men involved in processing electronic waste in Northern China. Environment International, 2018, 117, 69-81.	10.0	38
143	Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Environmental Pollution, 2018, 237, 396-405.	7.5	34
144	A Cross-species Quantitative Adverse Outcome Pathway for Activation of the Aryl Hydrocarbon Receptor Leading to Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes. Environmental Science & Early Life Stage Mortality in Birds and Fishes.	10.0	42

#	Article	IF	CITATIONS
145	Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants. Ecotoxicology and Environmental Safety, 2018, 161, 190-197.	6.0	16
146	Bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs) by the Marine Clam, <i>Mactra veneriformis </i> , Chronically Exposed to Oil-Suspended Particulate Matter Aggregates. Environmental Science & Environmental Science	10.0	26
147	Application of the Target Lipid Model and Passive Samplers to Characterize the Toxicity of Bioavailable Organics in Oil Sands Process-Affected Water. Environmental Science &	10.0	29
148	Potential health risks posed by polycyclic aromatic hydrocarbons in muscle tissues of fishes from the Athabasca and Slave Rivers, Canada. Environmental Geochemistry and Health, 2017, 39, 139-160.	3.4	39
149	Microbial Biomass and Community Composition Involved in Cycling of Organic Phosphorus in Sediments of Lake Dianchi, Southwest China. Geomicrobiology Journal, 2017, 34, 249-260.	2.0	9
150	Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias) Tj ETQq0 0 0 rgB (DIM). Aquatic Toxicology, 2017, 183, 135-143.	BT /Overlo	ck 10 Tf 50 5
151	Influence of blooms of phytoplankton on concentrations of hydrophobic organic chemicals in sediments and snails in a hyper-eutrophic, freshwater lake. Water Research, 2017, 113, 22-31.	11.3	39
152	Organophosphate Esters in Sediment of the Great Lakes. Environmental Science &	10.0	161
153	Oil sands process-affected water impairs feeding by Daphnia magna. Chemosphere, 2017, 175, 465-472.	8.2	20
154	Response to Comment on "Mutagenic Azo Dyes, Rather than Flame Retardants, are the Predominant Brominated Compounds in House Dust― Environmental Science & Environmental Science & 2017, 51, 3591-3592.	10.0	3
155	Refocusing on Nonpriority Toxic Metals in the Aquatic Environment in China. Environmental Science & En	10.0	55
156	Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China. Science of the Total Environment, 2017, 586, 163-173.	8.0	56
157	Ecogenomics of Zooplankton Community Reveals Ecological Threshold of Ammonia Nitrogen. Environmental Science & Environmental S	10.0	83
158	Life cycle analysis of perfluorooctanoic acid (PFOA) and its salts in China. Environmental Science and Pollution Research, 2017, 24, 11254-11264.	5.3	21
159	Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities. Journal of Environmental Sciences, 2017, 57, 127-136.	6.1	9
160	Responses of the Proteome and Metabolome in Livers of Zebrafish Exposed Chronically to Environmentally Relevant Concentrations of Microcystin-LR. Environmental Science & Envi	10.0	109
161	Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish. Environmental Pollution, 2017 , 229 , $470-478$.	7. 5	43
162	Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic potencies with several nuclear receptors. Environmental Pollution, 2017, 227, 578-586.	7.5	9

#	Article	IF	CITATIONS
163	End-of-life (EoL) mobile phone management in Hong Kong households. Journal of Environmental Management, 2017, 200, 22-28.	7.8	33
164	Predicting criteria continuous concentrations of metals or metalloids for protecting marine life by use of quantitative ion characteristic–activity relationships–species sensitivity distributions (QICAR-SSD). Marine Pollution Bulletin, 2017, 124, 639-644.	5.0	14
165	Spatial and temporal ecological risk assessment of unionized ammonia nitrogen in Tai Lake, China (2004–2015). Ecotoxicology and Environmental Safety, 2017, 140, 249-255.	6.0	14
166	Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution. Science of the Total Environment, 2017, 586, 817-826.	8.0	46
167	Traditional and new POPs in environments along the Bohai and Yellow Seas: An overview of China and South Korea. Chemosphere, 2017, 169, 503-515.	8.2	82
168	Spatial and Temporal Trends of Polyhalogenated Carbazoles in Sediments of Upper Great Lakes: Insights into Their Origin. Environmental Science & Environmental Science & 2017, 51, 89-97.	10.0	80
169	Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands processâ€affected water: evidence for inhibition of Pâ€glycoprotein. Journal of Applied Toxicology, 2017, 37, 591-601.	2.8	16
170	Phthalate Esters on Hands of Office Workers: Estimating the Influence of Touching Surfaces. Environmental Science and Technology Letters, 2017, 4, 1-5.	8.7	15
171	Extended Virtual Screening Strategies To Link Antiandrogenic Activities and Detected Organic Contaminants in Soils. Environmental Science & Extended Science & Extend	10.0	16
172	Human dietary intake and hazard characterization for residues of neonicotinoides and organophosphorus pesticides in Egyptian honey. Toxicological and Environmental Chemistry, 2017, 99, 1397-1408.	1.2	7
173	Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). Chemosphere, 2017, 186, 893-900.	8.2	22
174	Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills. Environmental Sciences: Processes and Impacts, 2017, 19, 1117-1125.	3.5	38
175	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. Chemosphere, 2017, 186, 209-217.	8.2	2
176	Glucuronide and Sulfate Conjugates of Bisphenol A: Chemical Synthesis and Correlation Between Their Urinary Levels and Plasma Bisphenol A Content in Voluntary Human Donors. Archives of Environmental Contamination and Toxicology, 2017, 73, 410-420.	4.1	25
177	Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring. Aquatic Toxicology, 2017, 190, 46-52.	4.0	55
178	Identification of Chemicals that Cause Oxidative Stress in Oil Sands Process-Affected Water. Environmental Science & Environme	10.0	27
179	Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China. Environmental Science and Pollution Research, 2017, 24, 1880-1889.	5.3	12
180	Responses of earthworms and microbial communities in their guts to Triclosan. Chemosphere, 2017, 168, 1194-1202.	8.2	63

#	Article	IF	Citations
181	Assessment of potential biological activities and distributions of endocrine-disrupting chemicals in sediments of the west coast of South Korea. Chemosphere, 2017, 168, 441-449.	8.2	20
182	A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. Science of the Total Environment, 2017, 576, 609-616.	8.0	18
183	Glucuronide and sulfate conjugates of tetrabromobisphenol A (TBBPA): Chemical synthesis and correlation between their urinary levels and plasma TBBPA content in voluntary human donors. Environment International, 2017, 98, 46-53.	10.0	39
184	Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. European Review for Medical and Pharmacological Sciences, 2017, 21, 635-645.	0.7	25
185	The case for establishing a board of review for resolving environmental issues: The science court in Canada. Integrated Environmental Assessment and Management, 2016, 12, 572-579.	2.9	5
186	Relative sensitivities among avian species to individual and mixtures of aryl hydrocarbon receptor–active compounds. Environmental Toxicology and Chemistry, 2016, 35, 1239-1246.	4.3	1
187	China's Soil Pollution Control: Choices and Challenges. Environmental Science & Environmental Scien	10.0	90
188	Effect-directed analysis: Current status and future challenges. Ocean Science Journal, 2016, 51, 413-433.	1.3	31
189	Chronic Exposure of Marine Medaka (<i>Oryzias melastigma</i>) to 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science	10.0	51
190	Responses of the zebrafish hypothalamic–pituitary–gonadal–liver axis PCR array to prochloraz are dependent on timing of sampling. Aquatic Toxicology, 2016, 175, 154-159.	4.0	7
191	Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?. Environmental Pollution, 2016, 213, 913-921.	7.5	49
192	Causes of endocrine disrupting potencies in surface water in East China. Chemosphere, 2016, 144, 1435-1442.	8.2	22
193	In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds. Ecotoxicology and Environmental Safety, 2016, 126, 202-210.	6.0	14
194	Hazard posed by metals and As in PM2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environmental Science and Pollution Research, 2016, 23, 17603-17612.	5.3	29
195	Bioanalytical and instrumental screening of the uptake of sediment-borne, dioxin-like compounds in roach (Rutilus rutilus). Environmental Science and Pollution Research, 2016, 23, 12060-12074.	5.3	11
196	High Conservation in Transcriptomic and Proteomic Response of White Sturgeon to Equipotent Concentrations of 2,3,7,8-TCDD, PCB 77, and Benzo[a]pyrene. Environmental Science &	10.0	35
197	Untargeted Screening and Distribution of Organo-lodine Compounds in Sediments from Lake Michigan and the Arctic Ocean. Environmental Science & Environ	10.0	30
198	Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance. Science of the Total Environment, 2016, 571, 380-387.	8.0	75

#	Article	IF	CITATIONS
199	Equol Induces Gonadal Intersex in Japanese Medaka (<i>Oryzias latipes</i>) at Environmentally Relevant Concentrations: Comparison with 17β-Estradiol. Environmental Science & Environmental &	10.0	24
200	Linking Oxidative Stress and Magnitude of Compensatory Responses with Life-Stage Specific Differences in Sensitivity of White Sturgeon (<i>Acipenser transmontanus</i>) to Copper or Cadmium. Environmental Science & Description (<i>Acipenser transmontanus</i>) to Copper or Cadmium.	10.0	32
201	Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (<i>Pimephales promelas</i>). Environmental Science & Emp; Technology, 2016, 50, 8858-8866.	10.0	26
202	A Reagent-Free Screening Assay for Evaluation of the Effects of Chemicals on the Proliferation and Morphology of HeLa-GFP Cells. Environmental Science and Technology Letters, 2016, 3, 322-326.	8.7	3
203	Historical record of effects of human activities on absolute and relative concentrations of Polycyclic aromatic hydrocarbons (PAHs) in Lake Chao, China. Journal of Environmental Sciences, 2016, 46, 1-4.	6.1	7
204	Impairment of reproduction of adult zebrafish (Danio rerio) by binary mixtures of environmentally relevant concentrations of triclocarban and inorganic mercury. Ecotoxicology and Environmental Safety, 2016, 134, 124-132.	6.0	17
205	Magnetic Nanoparticles Interaction with Humic Acid: In the Presence of Surfactants. Environmental Science & Environmental Scie	10.0	42
206	Identification of Thyroid Hormone Disruptors among HO-PBDEs: <i>In Vitro</i> Investigations and Coregulator Involved Simulations. Environmental Science & Environmental Science	10.0	37
207	Chemical characterization and antioxidant properties of Canadian propolis. Journal of Apicultural Research, 2016, 55, 305-314.	1.5	23
208	Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust. Environmental Science & Environmental Scienc	10.0	45
209	Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish. Ecotoxicology and Environmental Safety, 2016, 132, 47-58.	6.0	18
210	Occurrence of Atrazine and Related Compounds in Sediments of Upper Great Lakes. Environmental Science & Environmental Science	10.0	47
211	Peroxisome Proliferator-Activated Receptor \hat{l}^3 is a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands. Environmental Science & Eamp; Technology, 2016, 50, 7816-7824.	10.0	23
212	Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (<i>Oryzias latipes</i>) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO). Environmental Science & Drothology, 2016, 50, 7781-7790.	10.0	48
213	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. Chemosphere, 2016, 144, 1754-1762.	8.2	18
214	Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams. Journal of Hazardous Materials, 2016, 317, 275-283.	12.4	56
215	Effect of oil sands process-affected water on toxicity of retene to early life-stages of Japanese medaka (Oryzias latipes). Aquatic Toxicology, 2016, 176, 1-9.	4.0	23
216	Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. Environmental Science & Emp; Technology, 2016, 50, 2318-2327.	10.0	19

#	Article	IF	Citations
217	Bioconcentration of Dissolved Organic Compounds from Oil Sands Process-Affected Water by Medaka (<i>Oryzias latipes</i>): Importance of Partitioning to Phospholipids. Environmental Science & Environmental &	10.0	26
218	Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology, 2016, 10, 1207-1214.	3.0	70
219	Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy. Science of the Total Environment, 2016, 543, 746-756.	8.0	37
220	Products of biotransformation of polycyclic aromatic hydrocarbons in fishes of the Athabasca/Slave river system, Canada. Environmental Geochemistry and Health, 2016, 38, 577-591.	3.4	22
221	Inhibition of ABC transport proteins by oil sands process affected water. Aquatic Toxicology, 2016, 170, 81-88.	4.0	31
222	Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China. Science of the Total Environment, 2016, 541, 65-73.	8.0	45
223	Interaction of alkaline phosphatase with minerals and sediments: Activities, kinetics and hydrolysis of organic phosphorus. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 46-53.	4.7	47
224	Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China. Journal of Hazardous Materials, 2016, 307, 55-63.	12.4	104
225	Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy. Environmental Science and Pollution Research, 2016, 23, 7288-7297.	5. 3	40
226	Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: Distribution, sources, and risks to humans and wildlife. Science of the Total Environment, 2016, 556, 12-22.	8.0	51
227	Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere, 2016, 144, 2321-2328.	8.2	117
228	Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan. Environmental Science & Envir	10.0	45
229	Classification and toxicity mechanisms of novel flame retardants (NFRs) based on whole genome expression profiling. Chemosphere, 2016, 144, 2150-2157.	8.2	15
230	Bioaccessibility of AhR-active PAHs in sediments contaminated by the Hebei Spirit oil spill: Application of Tenax extraction in effect-directed analysis. Chemosphere, 2016, 144, 706-712.	8.2	39
231	Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Science of the Total Environment, 2016, 539, 97-104.	8.0	157
232	Families of Nuclear Receptors in Vertebrate Models: Characteristic and Comparative Toxicological Perspective. Scientific Reports, 2015, 5, 8554.	3.3	57
233	Effects of treatments with Apivar ^{\hat{A}^{\otimes}} and Thymovar ^{\hat{A}^{\otimes}} on <i>V. destructor</i> populations, virus infections and indoor winter survival of Canadian honey bee (<i>Apis mellifera</i>) Tj ETQq1 1	0. 7.8 4314	rgBT /Overlo
234	Do water quality criteria based on nonnative species provide appropriate protection for native species?. Environmental Toxicology and Chemistry, 2015, 34, 1793-1798.	4.3	23

#	Article	IF	CITATIONS
235	AhR-mediated activities and compounds in sediments of Meiliang Bay, Taihu Lake, China determined by in vitro bioassay and instrumental analysis. RSC Advances, 2015, 5, 55746-55755.	3.6	6
236	Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. Environmental Science and Pollution Research, 2015, 22, 17434-17442.	5 . 3	26
237	Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer. Scientific Reports, 2015, 5, 8723.	3.3	30
238	Bioaccumulation and molecular effects of sediment-bound metals in zebrafish embryos. Environmental Science and Pollution Research, 2015, 22, 16290-16304.	5 . 3	22
239	Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water. Environmental Science & Environm	10.0	132
240	Long-term spatial trends in sedimentary algal pigments in a narrow river-valley reservoir, Lake Diefenbaker, Canada. Journal of Great Lakes Research, 2015, 41, 56-66.	1.9	26
241	Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model. Environmental Science and Pollution Research, 2015, 22, 4297-4304.	5. 3	20
242	Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis. Chemosphere, 2015, 122, 168-175.	8.2	17
243	Distribution and bioaccumulation of lead in the coastal watersheds of the Northern Bohai and Yellow Seas in China. Environmental Geochemistry and Health, 2015, 37, 491-506.	3.4	11
244	Effect-directed analysis and mixture effects of AhR-active PAHs in crude oil and coastal sediments contaminated by the Hebei Spirit oilÂspill. Environmental Pollution, 2015, 199, 110-118.	7.5	43
245	Detection, Identification, and Quantification of Hydroxylated Bis(2-ethylhexyl)-Tetrabromophthalate Isomers in House Dust. Environmental Science & Env	10.0	19
246	Bioassay-directed identification of organic toxicants in water and sediment of Tai Lake, China. Water Research, 2015, 73, 231-241.	11.3	35
247	Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China. Environmental Science and Pollution Research, 2015, 22, 9626-9636.	5.3	46
248	Influence of natural organic matter on the bioavailability and preservation of organic phosphorus in lake sediments. Chemical Geology, 2015, 397, 51-60.	3.3	57
249	Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 2015, 37, 587-601.	3.4	72
250	Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicology and Environmental Safety, 2015, 114, 1-8.	6.0	76
251	Bioaccumulation, Biotransformation, and Toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in Early Life-Stages of Zebrafish (<i>Danio rerio</i>). Environmental Science & Echnology, 2015, 49, 1823-1833.	10.0	72
252	Can zero-valent iron nanoparticles remove waterborne estrogens?. Journal of Environmental Management, 2015, 150, 387-392.	7.8	27

#	Article	IF	Citations
253	Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos. Environmental Science and Pollution Research, 2015, 22, 2303-2310.	5.3	9
254	Improvement on species sensitivity distribution methods for deriving site-specific water quality criteria. Environmental Science and Pollution Research, 2015, 22, 5271-5282.	5.3	13
255	Surfactant-modified flowerlike layered double hydroxide-coated magnetic nanoparticles for preconcentration of phthalate esters from environmental water samples. Journal of Chromatography A, 2015, 1414, 22-30.	3.7	48
256	Effects of Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the Ribosome. Scientific Reports, 2015, 5, 10562.	3.3	34
257	Cetyltrimethylammonium Bromide-Coated Fe ₃ O ₄ Magnetic Nanoparticles for Analysis of 15 Trace Polycyclic Aromatic Hydrocarbons in Aquatic Environments by Ultraperformance, Liquid Chromatography With Fluorescence Detection. Analytical Chemistry, 2015, 87, 7667-7675.	6.5	55
258	Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues. Chemosphere, 2015, 139, 23-29.	8.2	28
259	Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea. Chemosphere, 2015, 129, 157-163.	8.2	89
260	Urinary bromophenol glucuronide and sulfate conjugates: Potential human exposure molecular markers for polybrominated diphenyl ethers. Chemosphere, 2015, 133, 6-12.	8.2	20
261	Dose-dependent compensation responses of the hypothalamic-pituitary-gonadal-liver axis of zebrafish exposed to the fungicide prochloraz. Aquatic Toxicology, 2015, 160, 69-75.	4.0	38
262	Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka. Aquatic Toxicology, 2015, 160, 180-187.	4.0	25
263	Differences in Activation of Aryl Hydrocarbon Receptors of White Sturgeon Relative to Lake Sturgeon Are Predicted by Identities of Key Amino Acids in the Ligand Binding Domain. Environmental Science & Eamp; Technology, 2015, 49, 4681-4689.	10.0	32
264	Transcriptional changes in African clawed frogs (Xenopus laevis) exposed to 17α-ethynylestradiol during early development. Ecotoxicology, 2015, 24, 321-329.	2.4	1
265	Spatio-temporal effects of fertilization in Anhui Province, China. Environment, Development and Sustainability, 2015, 17, 1197-1207.	5.0	12
266	Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals. Environmental Science and Pollution Research, 2015, 22, 13980-13989.	5.3	15
267	In Vitro Assessment of Endocrine Disrupting Potential of Naphthenic Acid Fractions Derived from Oil Sands-Influenced Water. Environmental Science & En	10.0	29
268	Exposure of honeybees (Apis mellifera) in Saskatchewan, Canada to organophosphorus insecticides. Apidologie, 2015, 46, 667-678.	2.0	17
269	Identification and response to metals of metallothionein in two ancient fishes: White sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 171, 41-48.	2.6	17
270	Organobromine compound profiling in human adipose: Assessment of sources of bromophenol. Environmental Pollution, 2015, 204, 81-89.	7.5	20

#	Article	IF	Citations
271	Distribution Characteristics and Risk Assessments of PAHs in Fish from Lake Taihu, China. Human and Ecological Risk Assessment (HERA), 2015, 21, 1753-1765.	3.4	11
272	Probabilistic ecological risk assessment of copper in Chinese offshore marine environments from 2005 to 2012. Marine Pollution Bulletin, 2015, 94, 96-102.	5.0	28
273	Untargeted Identification of Organo-Bromine Compounds in Lake Sediments by Ultrahigh-Resolution Mass Spectrometry with the Data-Independent Precursor Isolation and Characteristic Fragment Method. Analytical Chemistry, 2015, 87, 10237-10246.	6.5	81
274	Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.). Journal of Insect Physiology, 2015, 82, 85-91.	2.0	26
275	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit Growth of Female Zebrafish and Decrease Fecundity. Environmental Science & Echnology, 2015, 49, 14579-14587.	10.0	107
276	Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of $\langle i \rangle$ Daphnia magna $\langle i \rangle$ at Environmentally Relevant Concentrations. Environmental Science & Emp; Technology, 2015, 49, 12975-12983.	10.0	81
277	A novel chemical additive for in-situ recovery of heavy oil using waterflooding process. Journal of Petroleum Science and Engineering, 2015, 135, 484-497.	4.2	8
278	Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio). Aquatic Toxicology, 2015, 169, 196-203.	4.0	21
279	Evidence for MicroRNA-Mediated Regulation of Steroidogenesis by Hypoxia. Environmental Science & Environmental	10.0	21
280	Human health risk assessment of soil dioxin/furans contamination and dioxin-like activity determined by ethoxyresorufin-O-deethylase bioassay. Environmental Science and Pollution Research, 2015, 22, 5218-5227.	5.3	4
281	Identification of polycyclic aromatic hydrocarbons in soils in Taizhou, East China. Environmental Geochemistry and Health, 2015, 37, 429-439.	3.4	6
282	Spatial and temporal distribution and sources of polycyclic aromatic hydrocarbons in sediments of Taihu Lake, eastern China. Environmental Science and Pollution Research, 2015, 22, 5350-5358.	5.3	27
283	A mixture of the novel brominated flame retardants TBPH and TBB affects fecundity and transcript profiles of the HPGL-axis in Japanese medaka. Aquatic Toxicology, 2015, 158, 14-21.	4.0	34
284	Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio). Chemosphere, 2015, 120, 31-36.	8.2	29
285	Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research, 2015, 72, 127-144.	11.3	35
286	Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions. Archives of Toxicology, 2015, 89, 1371-1381.	4.2	75
287	Metals in agricultural soils and plants in Egypt. Toxicological and Environmental Chemistry, 2014, 96, 730-742.	1.2	49
288	Vertical distributions of bound saturated fatty acids and compound-specific stable carbon isotope compositions in sediments of two lakes in China: implication for the influence of eutrophication. Environmental Science and Pollution Research, 2014, 21, 13138-13147.	5. 3	5

#	Article	IF	Citations
289	Tissue Residue Guideline for â´DDT for Protection of Aquatic Birds in China. Human and Ecological Risk Assessment (HERA), 2014, 20, 1629-1642.	3.4	3
290	Weighted species sensitivity distribution method to derive site-specific quality criteria for copper in Tai Lake, China. Environmental Science and Pollution Research, 2014, 21, 12968-12978.	5.3	11
291	Photolytic Degradation Products of Two Highly Brominated Flame Retardants Cause Cytotoxicity and mRNA Expression Alterations in Chicken Embryonic Hepatocytes. Environmental Science & Eamp; Technology, 2014, 48, 12039-12046.	10.0	38
292	Timeâ€dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4llEâ€luc bioassay. Environmental Toxicology and Chemistry, 2014, 33, 943-953.	4.3	39
293	Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part II. In vitro biological potencies. Environment International, 2014, 63, 64-70.	10.0	34
294	Regulation of CYP11B1 and CYP11B2 steroidogenic genes by hypoxia-inducible miR-10b in H295R cells. Marine Pollution Bulletin, 2014, 85, 344-351.	5.0	29
295	Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol. Environmental Science and Pollution Research, 2014, 21, 234-243.	5.3	20
296	Development of aquatic life criteria in China: viewpoint on the challenge. Environmental Science and Pollution Research, 2014, 21, 61-66.	5.3	16
297	A comparison of statistical methods for deriving freshwater quality criteria for the protection of aquatic organisms. Environmental Science and Pollution Research, 2014, 21, 159-167.	5.3	27
298	Dioxin-like activity in sediments from Tai Lake, China determined by use of the H4IIE-luc bioassay and quantification of individual AhR agonists. Environmental Science and Pollution Research, 2014, 21, 1480-1488.	5.3	16
299	Longer-term and short-term variability in pollution of fluvial sediments by dioxin-like and endocrine disruptive compounds. Environmental Science and Pollution Research, 2014, 21, 5007-5022.	5.3	11
300	Seasonal concentrations of lead in outdoor and indoor dust and blood of children in Riyadh, Saudi Arabia. Environmental Geochemistry and Health, 2014, 36, 583-593.	3.4	30
301	Microalga Euglena as a bioindicator for testing genotoxic potentials of organic pollutants in Taihu Lake, China. Ecotoxicology, 2014, 23, 633-640.	2.4	25
302	Effect-based assessment of passive air samples from four countries in Eastern Europe. Environmental Monitoring and Assessment, 2014, 186, 3905-3916.	2.7	18
303	Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model. Environmental Pollution, 2014, 188, 50-55.	7.5	33
304	What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environment International, 2014, 64, 98-109.	10.0	134
305	In situ effects of urban river pollution on the mudsnail Potamopyrgus antipodarum as part of an integrated assessment. Aquatic Toxicology, 2014, 150, 83-92.	4.0	15
306	Polyhalogenated Carbazoles in Sediments of Lake Michigan: A New Discovery. Environmental Science & Env	10.0	98

#	Article	IF	CITATIONS
307	Perfluoroalkyl substances and organochlorine pesticides in sediments from Huaihe watershed in China. Journal of Environmental Sciences, 2014, 26, 2198-2206.	6.1	17
308	Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China, 2009–2012. Chemosphere, 2014, 114, 340-346.	8.2	38
309	Isomer-Specific Accumulation of Perfluorooctanesulfonate from (<i>N</i> -Ethyl) Tj ETQq1 1 0.784314 rgBT /Overl Environmental Science & Environmental S	ock 10 Tf 10.0	50 667 Td 54
310	Inferring sources for mercury to inland lakes using sediment chronologies of polycyclic aromatic hydrocarbons. Environmental Sciences: Processes and Impacts, 2014, 16, 2108-2116.	3.5	4
311	Mechanisms of Toxicity of Hydroxylated Polybrominated Diphenyl Ethers (HO-PBDEs) Determined by Toxicogenomic Analysis with a Live Cell Array Coupled with Mutagenesis in <i>Escherichia coli</i> Environmental Science & Dechnology, 2014, 48, 5929-5937.	10.0	40
312	Ecological Risk of Nonylphenol in China Surface Waters Based on Reproductive Fitness. Environmental Science & Environmental Sc	10.0	132
313	AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. Environment International, 2014, 73, 94-103.	10.0	22
314	Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils. Environmental Monitoring and Assessment, 2014, 186, 5297-5306.	2.7	13
315	Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser) Tj ETQq1 1 0.7 Research, 2014, 21, 8176-8187.	84314 rgl 5.3	BT /Overloc 29
316	Perfluoroalkyl substances in soils around the Nepali Koshi River: levels, distribution, and mass balance. Environmental Science and Pollution Research, 2014, 21, 9201-9211.	5. 3	41
317	Functionality of Aryl Hydrocarbon Receptors (AhR1 and AhR2) of White Sturgeon (<i>Acipenser) Tj ETQq1 1 0.784 Environmental Science & Environmental Sc</i>	4314 rgBT 10.0	/Overlock 22
318	Removal of Phosphate from Eutrophic Lakes through Adsorption by in Situ Formation of Magnesium Hydroxide from Diatomite. Environmental Science & Envir	10.0	213
319	Instrumental and bioanalytical measures of dioxin-like compounds and activities in sediments of the Pohang Area, Korea. Science of the Total Environment, 2014, 470-471, 1517-1525.	8.0	18
320	In vitro bioassays for detecting dioxin-like activity â€" Application potentials and limits of detection, a review. Science of the Total Environment, 2014, 487, 37-48.	8.0	82
321	Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor $\hat{l}\pm\hat{l}^2$ in low doses of bisphenol A promoting growth of Sertoli TM4 cells. Toxicology Letters, 2014, 226, 81-89.	0.8	126
322	A national pilot scheme for monitoring and assessment of ecological integrity of surface waters in China. Environmental Development, 2014, 10, 104-107.	4.1	13
323	Species-specific relative AHR1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 161, 21-25.	2.6	7
324	Effects of dechlorane plus on the hepatic proteome of juvenile Chinese sturgeon (Acipenser sinensis). Aquatic Toxicology, 2014, 148, 83-91.	4.0	26

#	Article	IF	Citations
325	Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China. Marine Pollution Bulletin, 2014, 85, 619-627.	5.0	50
326	Effects of Columbia River water on early life-stages of white sturgeon (Acipenser transmontanus). Ecotoxicology and Environmental Safety, 2014, 101, 23-30.	6.0	10
327	Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring. Environmental Science and Pollution Research, 2014, 21, 10970-10982.	5.3	54
328	Species- and tissue-specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea. Environmental Pollution, 2014, 192, 27-35.	7.5	41
329	Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere, 2014, 114, 203-209.	8.2	73
330	Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: Assessment of risks to humans. Science of the Total Environment, 2014, 487, 224-232.	8.0	69
331	Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds. Aquatic Toxicology, 2014, 150, 27-35.	4.0	29
332	Effects of novel brominated flame retardants on steroidogenesis in primary porcine testicular cells. Toxicology Letters, 2014, 224, 141-6.	0.8	8
333	Ecotoxicology of organochlorine chemicals in birds of the great lakes. Environmental Toxicology and Chemistry, 2013, 32, 490-492.	4.3	3
334	Lead in drinking water and human blood in Riyadh City, Saudi Arabia. Arabian Journal of Geosciences, 2013, 6, 3103-3109.	1.3	18
335	InÂvitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. Water Research, 2013, 47, 1545-1557.	11.3	80
336	Biota–sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of waterbirds. Environmental Science and Pollution Research, 2013, 20, 8425-8434.	5.3	54
337	Revised relative potency values for PCDDs, PCDFs, and non-ortho-substituted PCBs for the optimized H4IIE-luc in vitro bioassay. Environmental Science and Pollution Research, 2013, 20, 8590-8599.	5.3	37
338	Quantitative and qualitative characteristics of dissolved organic matter from eight dominant aquatic macrophytes in Lake Dianchi, China. Environmental Science and Pollution Research, 2013, 20, 7413-7423.	5.3	44
339	In vitro effects of pollutants from particulate and volatile fractions of air samples—day and night variability. Environmental Science and Pollution Research, 2013, 20, 6620-6627.	5.3	17
340	Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in Southwest China. Environmental Science and Pollution Research, 2013, 20, 5471-5480.	5.3	42
341	Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China. Environmental Science and Pollution Research, 2013, 20, 3965-3974.	5.3	40
342	Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China. Journal of Soils and Sediments, 2013, 13, 1084-1092.	3.0	21

#	Article	lF	Citations
343	Effects of exposure to $17\hat{i}_{\pm}$ -ethynylestradiol during larval development on growth, sexual differentiation, and abundances of transcripts in the liver of the wood frog (Lithobates sylvaticus). Aquatic Toxicology, 2013, 126, 42-51.	4.0	35
344	Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. Ecotoxicology and Environmental Safety, 2013, 89, 143-149.	6.0	25
345	Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 2013, 25, 1936-1946.	6.1	45
346	Biological impact of phthalates. Toxicology Letters, 2013, 217, 50-58.	0.8	247
347	Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2013, 261, 770-776.	12.4	158
348	Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 2013, 32, 10-11.	4.3	199
349	Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array. Environmental Science and Pollution Research, 2013, 20, 803-811.	5. 3	16
350	Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environment International, 2013, 59, 372-383.	10.0	64
351	In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & Double TBCO. Toxicology Letters, 2013, 223, 252-259.	0.8	71
352	Concentrations and congener profiles of polybrominated diphenyl ethers (PBDEs) in blood plasma from Hong Kong: Implications for sources and exposure route. Journal of Hazardous Materials, 2013, 261, 253-259.	12.4	37
353	Competitive interaction between soil-derived humic acid and phosphate on goethite. Applied Geochemistry, 2013, 36, 125-131.	3.0	72
354	Concentrations of organochlorine pesticides (OCPs) in human blood plasma from Hong Kong: Markers of exposure and sources from fish. Environment International, 2013, 54, 18-25.	10.0	66
355	Effects of Exposure to 17α-Ethynylestradiol during Sexual Differentiation on the Transcriptome of the African Clawed Frog (Xenopus laevis). Environmental Science & Eamp; Technology, 2013, 47, 4822-4828.	10.0	11
356	Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain. Environmental Science and Pollution Research, 2013, 20, 1219-1224.	5. 3	44
357	Characterization of Organic Phosphorus in Lake Sediments by Sequential Fractionation and Enzymatic Hydrolysis. Environmental Science & Environmental S	10.0	155
358	Experience in South Africa of combining bioanalysis and instrumental analysis of PCDD/Fs. TrAC - Trends in Analytical Chemistry, 2013, 46, 189-197.	11.4	7
359	Sensitivity of early life stages of white sturgeon, rainbow trout, and fathead minnow to copper. Ecotoxicology, 2013, 22, 139-147.	2.4	44
360	Occurrence and Potential Causes of Androgenic Activities in Source and Drinking Water in China. Environmental Science & Enviro	10.0	17

#	Article	IF	Citations
361	Polycyclic aromatic hydrocarbons in soils along the coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environmental Monitoring and Assessment, 2013, 185, 8185-8195.	2.7	26
362	Predicting Water Quality Criteria for Protecting Aquatic Life from Physicochemical Properties of Metals or Metalloids. Environmental Science & Environ	10.0	89
363	Amino Acid Sequence of the Ligand-Binding Domain of the Aryl Hydrocarbon Receptor 1 Predicts Sensitivity of Wild Birds to Effects of Dioxin-Like Compounds. Toxicological Sciences, 2013, 131, 139-152.	3.1	101
364	PHOTOâ€ENHANCED TOXICITY: SERENDIPITY OF A PREPARED MIND AND FLEXIBLE PROGRAM MANAGEMENT. Environmental Toxicology and Chemistry, 2013, 32, 969-971.	4.3	7
365	Multiple lines of evidence risk assessment of american robins exposed to polychlorinated dibenzofurans (PCDFS) and polychlorinated dibenzoâ€ <i>P</i> i>and polychlorinated dibenzoâ€ <i>P</i> dioxins (PCDDS) in the tittabawassee river floodplain, Midland, Michigan, Usa. Environmental Toxicology and Chemistry, 2013, 32, 1304-1316.	4.3	0
366	Environmental concentrations and bioaccumulations of cadmium and zinc in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. Environmental Toxicology and Chemistry, 2013, 32, 831-840.	4.3	22
367	Expression profile of oestrogen receptors and oestrogenâ€related receptors is organ specific and sex dependent: the Japanese medaka ⟨i⟩Oryzias latipes⟨/i⟩ model. Journal of Fish Biology, 2013, 83, 295-310.	1.6	9
368	Contribution of Priority PAHs and POPs to Ah Receptor-Mediated Activities in Sediment Samples from the River Elbe Estuary, Germany. PLoS ONE, 2013, 8, e75596.	2.5	30
369	Identification of Thyroid Receptor Ant/Agonists in Water Sources Using Mass Balance Analysis and Monte Carlo Simulation. PLoS ONE, 2013, 8, e73883.	2.5	10
370	Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?. Environmental Health Perspectives, 2012, 120, 1221-1229.	6.0	1,033
371	Effects of a non-steroidal aromatase inhibitor on ovarian function in cattle. Reproduction, Fertility and Development, 2012, 24, 631.	0.4	12
372	Cyanobacteria blooms produce teratogenic retinoic acids. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9477-9482.	7.1	66
373	Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). Water Research, 2012, 46, 6359-6368.	11.3	128
374	Occurrence of Thyroid Hormone Activities in Drinking Water from Eastern China: Contributions of Phthalate Esters. Environmental Science & Environmenta	10.0	97
375	Leptin-Mediated Modulation of Steroidogenic Gene Expression in Hypoxic Zebrafish Embryos: Implications for the Disruption of Sex Steroids. Environmental Science & Emp; Technology, 2012, 46, 9112-9119.	10.0	31
376	Two Years after the <i>Hebei Spirit</i> Oil Spill: Residual Crude-Derived Hydrocarbons and Potential AhR-Mediated Activities in Coastal Sediments. Environmental Science & Env	10.0	77
377	Synthesis and Characterization of Bromophenol Glucuronide and Sulfate Conjugates for Their Direct LC-MS/MS Quantification in Human Urine as Potential Exposure Markers for Polybrominated Diphenyl Ethers. Analytical Chemistry, 2012, 84, 9881-9888.	6.5	21
378	Effectiveness of Ozonation Treatment in Eliminating Toxicity of Oil Sands Process-Affected Water to <i>Chironomus dilutus</i> . Environmental Science &	10.0	77

#	Article	IF	Citations
379	Accumulation and Biotransformation of BDE-47 by Zebrafish Larvae and Teratogenicity and Expression of Genes along the Hypothalamus–Pituitary–Thyroid Axis. Environmental Science & Technology, 2012, 46, 12943-12951.	10.0	68
380	Dioxin-like Potency of HO- and MeO- Analogues of PBDEs' the Potential Risk through Consumption of Fish from Eastern China. Environmental Science & Eamp; Technology, 2012, 46, 10781-10788.	10.0	50
381	Occurrences and Fates of Hydroxylated Polybrominated Diphenyl Ethers in Marine Sediments in Relation to Trophodynamics. Environmental Science & Environmental Science & 2012, 46, 2148-2155.	10.0	62
382	Controlling Air Pollution from Straw Burning in China Calls for Efficient Recycling. Environmental Science & Environmental Sci	10.0	97
383	Sequence and In Vitro Function of Chicken, Ring-Necked Pheasant, and Japanese Quail AHR1 Predict In Vivo Sensitivity to Dioxins. Environmental Science & Environmental Science	10.0	54
384	Transcriptional Responses of the Brain–Gonad–Liver Axis of Fathead Minnows Exposed to Untreated and Ozone-Treated Oil Sands Process-Affected Water. Environmental Science & Environmental Science	10.0	68
385	Toxicogenomic Mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in <i>E. coli</i> Science & Colic (I) and Inverse to the Colic (I)	10.0	39
386	Effects of exposure to oil sands process-affected water from experimental reclamation ponds on Chironomus dilutus. Water Research, 2012, 46, 1662-1672.	11.3	66
387	Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos. Aquatic Toxicology, 2012, 118-119, 108-115.	4.0	20
388	AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: A comparison between Korea and China. Environmental Pollution, 2012, 171, 216-225.	7. 5	45
389	Perfluorinated compounds in surface waters from Northern China: Comparison to level of industrialization. Environment International, 2012, 42, 37-46.	10.0	120
390	Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta. Environment International, 2012, 42, 117-123.	10.0	58
391	Dietary intake of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) from fish and meat by residents of Nanjing, China. Environment International, 2012, 42, 138-143.	10.0	56
392	Estrogenic activity in extracts and exudates of cyanobacteria and green algae. Environment International, 2012, 39, 134-140.	10.0	49
393	Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environment International, 2012, 45, 22-31.	10.0	31
394	Hydroxylated and methoxylated polybrominated diphenyl ethers in blood plasma of humans in Hong Kong. Environment International, 2012, 47, 66-72.	10.0	69
395	Incidence of jaw lesions and activity and gene expression of hepatic P4501A enzymes in mink (⟨i⟩Mustela vison⟨ i⟩) exposed to dietary 2,3,7,8â€tetrachlorodibenzoâ€⟨i⟩p⟨ i⟩â€dioxin, 2,3,7,8â€tetrachlorodibenzofuran, and 2,3,4,7,8â€pentachlorodibenzofuran. Environmental Toxicology and Chemistry, 2012, 31, 2545-2556.	4.3	3
396	pH-dependent aquatic criteria for 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol. Science of the Total Environment, 2012, 441, 125-131.	8.0	45

#	Article	IF	Citations
397	Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effectâ€directed analysis. Environmental Toxicology and Chemistry, 2012, 31, 1053-1062.	4.3	40
398	Dietary―and tissueâ€based exposure of belted kingfisher to PCDFs and PCDDs in the Tittabawassee River floodplain, Midland, MI, USA. Environmental Toxicology and Chemistry, 2012, 31, 1158-1168.	4.3	6
399	Reproductive success of three passerine species exposed to dioxin-like compounds near Midland, Michigan, USA. Ecotoxicology, 2012, 21, 1145-1154.	2.4	2
400	Perfluorinated compounds in a coastal industrial area of Tianjin, China. Environmental Geochemistry and Health, 2012, 34, 301-311.	3.4	41
401	PAHs in surface sediments from coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environmental Geochemistry and Health, 2012, 34, 445-456.	3.4	50
402	Daily intake of selenium and concentrations in blood of residents of Riyadh City, Saudi Arabia. Environmental Geochemistry and Health, 2012, 34, 417-431.	3.4	13
403	Toxicity of pentachlorophenol to native aquatic species in the Yangtze River. Environmental Science and Pollution Research, 2012, 19, 609-618.	5.3	49
404	A tiered ecological risk assessment of three chlorophenols in Chinese surface waters. Environmental Science and Pollution Research, 2012, 19, 1544-1554.	5.3	49
405	Environmental and health challenges of the global growth of electronic waste. Environmental Science and Pollution Research, 2012, 19, 2460-2462.	5.3	10
406	Probabilistic ecological risk assessment for three chlorophenols in surface waters of China. Journal of Environmental Sciences, 2012, 24, 329-334.	6.1	18
407	Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats. Toxicology and Applied Pharmacology, 2012, 259, 54-65.	2.8	59
408	Effects of dietary exposure of mink (<i>Mustela vison</i>) to 2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> àê€dioxin, 2,3,4,7,8â€pentachlorodibenzofuran, and 2,3,7,8â€tetrachlorodibenzofuran on reproduction and offspring viability and growth. Environmental Toxicology and Chemistry, 2012, 31, 360-369.	4.3	5
409	Perfluorinated compounds in water and sediment from coastal regions of the northern Bohai Sea, China. Chemistry and Ecology, 2011, 27, 165-176.	1.6	35
410	Endocrine disruption effects of $2,2\hat{a}\in^2$, $4,4\hat{a}\in^2$, 6 -pentabromodiphenylether (BDE100) in reporter gene assays. Journal of Environmental Monitoring, 2011, 13, 850.	2.1	19
411	Status and fuzzy comprehensive assessment of metals and arsenic contamination in farmland soils along the Yanghe River, China. Chemistry and Ecology, 2011, 27, 415-426.	1.6	20
412	Halogenated POPs and PAHs in Blood Plasma of Hong Kong Residents. Environmental Science & Emp; Technology, 2011, 45, 1630-1637.	10.0	68
413	Genotoxicity and Endocrine-Disruption Potentials of Sediment near an Oil Spill Site: Two Years after the <i>Hebei Spirit</i> Oil Spill. Environmental Science & Echnology, 2011, 45, 7481-7488.	10.0	64
414	Effect of Ozonation on the Estrogenicity and Androgenicity of Oil Sands Process-Affected Water. Environmental Science & Enviro	10.0	77

#	Article	IF	Citations
415	The Impact of Metallic Coagulants on the Removal of Organic Compounds from Oil Sands Process-Affected Water. Environmental Science & Technology, 2011, 45, 8452-8459.	10.0	103
416	Genotoxicity of Several Polybrominated Diphenyl Ethers (PBDEs) and Hydroxylated PBDEs, and Their Mechanisms of Toxicity. Environmental Science & Envir	10.0	90
417	Trans-Placental Transfer of Thirteen Perfluorinated Compounds and Relations with Fetal Thyroid Hormones. Environmental Science & Environmental Science	10.0	212
418	In vitro modulation of intracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex water blooms and their fractions. Aquatic Toxicology, 2011, 105, 497-507.	4.0	30
419	Attenuation of the cortisol response to stress in female rainbow trout chronically exposed to dietary selenomethionine. Aquatic Toxicology, 2011, 105, 643-651.	4.0	34
420	Chronic exposure to dietary selenomethionine increases gonadal steroidogenesis in female rainbow trout. Aquatic Toxicology, 2011, 105, 218-226.	4.0	38
421	Dietary exposure of great blue heron (Ardea herodias) to PCDD/DFs in the Tittabawassee River floodplain, MI, USA. Ecotoxicology and Environmental Safety, 2011, 74, 494-503.	6.0	2
422	Biochemical responses and DNA damage in red sea bream from coastal Fujian Province, China. Ecotoxicology and Environmental Safety, 2011, 74, 1526-1535.	6.0	7
423	Enhancement of AhR-mediated activity of selected pollutants and their mixtures after interaction with dissolved organic matter. Environment International, 2011, 37, 960-964.	10.0	22
424	Persistent halogenated compounds in aquaculture environments of South China: Implications for global consumers' health risk via fish consumption. Environment International, 2011, 37, 1190-1195.	10.0	28
425	Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants. Environmental Health Perspectives, 2011, 119, 6-10.	6.0	24
426	Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reproductive Toxicology, 2011, 31, 409-417.	2.9	189
427	Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: Environmental sources, metabolic relationships, and relative toxicities. Marine Pollution Bulletin, 2011, 63, 179-188.	5.0	169
428	Distribution and source apportionments of polychlorinated biphenyls (PCBs) in mariculture sediments from the Pearl River Delta, South China. Marine Pollution Bulletin, 2011, 63, 516-522.	5.0	37
429	In vitro profiling of endocrine disrupting potency of 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) and related hydroxylated analogs (HO-PBDEs). Marine Pollution Bulletin, 2011, 63, 287-296.	5.0	37
430	Perfluorinated compounds in estuarine and coastal areas of north Bohai Sea, China. Marine Pollution Bulletin, 2011, 62, 1905-1914.	5.0	95
431	Endocrine effects of methoxylated brominated diphenyl ethers in three in vitro models. Marine Pollution Bulletin, 2011, 62, 2356-2361.	5.0	32
432	Effects of Prochloraz or Propylthiouracil on the Cross-Talk between the HPG, HPA, and HPT Axes in Zebrafish. Environmental Science & Eamp; Technology, 2011, 45, 769-775.	10.0	113

#	Article	IF	CITATIONS
433	Assessing the Toxicity of Naphthenic Acids Using a Microbial Genome Wide Live Cell Reporter Array System. Environmental Science & Environmental Scienc	10.0	56
434	Genotoxicity of crude extracts of cyanobacteria from Taihu Lake on carp (Cyprinus carpio). Ecotoxicology, 2011, 20, 1010-1017.	2.4	10
435	Dietary exposure of three passerine species to PCDD/DFs from the Chippewa, Tittabawassee, and Saginaw River floodplains, Midland, Michigan, USA. Environmental Monitoring and Assessment, 2011, 172, 91-112.	2.7	8
436	Perfluorinated Compounds in Water, Sediment and Soil from Guanting Reservoir, China. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 74-79.	2.7	68
437	The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. Environmental Science and Pollution Research, 2011, 18, 446-460.	5.3	59
438	The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study. Environmental Science and Pollution Research, 2011, 18, 503-515.	5.3	76
439	Protective effects of eicosapentaenoic acid on genotoxicity and oxidative stress of cyclophosphamide in mice. Environmental Toxicology, 2011, 26, 217-223.	4.0	22
440	PBDEs and methoxylated analogues in sediment cores from two Michigan, USA, inland lakes. Environmental Toxicology and Chemistry, 2011, 30, 1236-1242.	4.3	27
441	Effects on tree swallows exposed to dioxinâ€like compounds associated with the Tittabawassee River and floodplain near Midland, Michigan, USA. Environmental Toxicology and Chemistry, 2011, 30, 1354-1365.	4.3	12
442	Developmental and posthatch effects of in ovo exposure to 2,3,7,8â€TCDD, 2,3,4,7,8â€PECDF, and 2,3,7,8â€TCD in Japanese quail (<i>Coturnix japonica</i>), common pheasant (<i>Phasianus colchicus</i>), and white leghorn chicken (<i>Gallus gallus domesticus</i>) embryos. Environmental Toxicology and Chemistry, 2011, 30, 1659-1668.	F 4.3	12
443	Effects of subchronic exposure of early life stages of white sturgeon (<i>Acipenser) Tj ETQq1 1 0.784314 rgBT /Ov 2497-2505.</i>	verlock 10 4.3	Tf 50 347 26
444	Modulation of estrogen synthesis through activation of protein kinase A in H295R cells by extracts of estuary sediments. Environmental Toxicology and Chemistry, 2011, 30, 2793-2801.	4.3	5
445	Exposure of Hong Kong residents to PBDEs and their structural analogues through market fish consumption. Journal of Hazardous Materials, 2011, 192, 374-80.	12.4	39
446	Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. Toxicology, 2011, 282, 146-153.	4.2	33
447	Testicular Signaling Is the Potential Target of Perfluorooctanesulfonate-Mediated Subfertility in Male Mice1. Biology of Reproduction, 2011, 84, 1016-1023.	2.7	93
448	Effect-Directed Analysis of Ah-Receptor Mediated Toxicants, Mutagens, and Endocrine Disruptors in Sediments and Biota. Handbook of Environmental Chemistry, 2011, , 285-313.	0.4	11
449	Perfluorinated Compounds in Aquatic Products from Bohai Bay, Tianjin, China. Human and Ecological Risk Assessment (HERA), 2011, 17, 1279-1291.	3.4	17
450	Bisphenol A Disrupts Steroidogenesis in Human H295R Cells. Toxicological Sciences, 2011, 121, 320-327.	3.1	114

#	Article	IF	CITATIONS
451	Sensitivity of Japanese Quail (Coturnix japonica), Common Pheasant (Phasianus colchicus), and White Leghorn Chicken (Gallus gallus domesticus) Embryos to In Ovo Exposure to TCDD, PeCDF, and TCDF. Toxicological Sciences, 2011, 119, 93-103.	3.1	45
452	Multiple Lines of Evidence Risk Assessment of Terrestrial Passerines Exposed to PCDFs and PCDDs in the Tittabawassee River Floodplain, Midland, Michigan, USA. Human and Ecological Risk Assessment (HERA), 2011, 17, 159-186.	3.4	10
453	SETAC: Part of the solution or part of the problem?. Environmental Toxicology and Chemistry, 2010, 9, 1327-1330.	4.3	0
454	Passerine Exposure to Primarily PCDFs and PCDDs in the River Floodplains Near Midland, Michigan, USA. Archives of Environmental Contamination and Toxicology, 2010, 58, 1048-1064.	4.1	18
455	HCH and DDT in Sediments from Marine and Adjacent Riverine Areas of North Bohai Sea, China. Archives of Environmental Contamination and Toxicology, 2010, 59, 71-79.	4.1	41
456	Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China. Energy Policy, 2010, 38, 2346-2356.	8.8	19
457	Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. Ambio, 2010, 39, 367-375.	5.5	120
458	Polybrominated diphenyl ethers and their methoxylated metabolites in anchovy (Coilia sp.) from the Yangtze River Delta, China. Environmental Science and Pollution Research, 2010, 17, 634-642.	5.3	27
459	Assessment of chemical effects on aromatase activity using the H295R cell line. Environmental Science and Pollution Research, 2010, 17, 1137-1148.	5.3	57
460	Chronic toxicity of contaminated sediments on reproduction and histopathology of the crustacean Gammarus fossarum and relationship with the chemical contamination and in vitro effects. Journal of Soils and Sediments, 2010, 10, 423-433.	3.0	14
461	A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part l–multiple biomarkers in rainbow trout. Journal of Soils and Sediments, 2010, 10, 1347-1361.	3.0	50
462	Spatial variability and temporal trends of HCH and DDT in soils around Beijing Guanting Reservoir, China. Environmental Geochemistry and Health, 2010, 32, 441-449.	3.4	11
463	Bioaccumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in fishes from the Tittabawassee and Saginaw Rivers, Michigan, USA. Science of the Total Environment, 2010, 408, 2394-2401.	8.0	36
464	Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade. Toxicology and Applied Pharmacology, 2010, 247, 222-228.	2.8	38
465	Effects of in ovo exposure of white leghorn chicken, common pheasant, and Japanese quail to 2,3,7,8â€tetrachlorodibenzoâ€∢i>p⟨/i>â€dioxin and two chlorinated dibenzofurans on CYP1A induction. Environmental Toxicology and Chemistry, 2010, 29, 1490-1502.	4.3	20
466	2,3,4,7,8â€pentachlorodibenzofuran is a more potent cytochrome P4501A inducer than 2,3,7,8â€tetrachlorodibenzoâ€∢i>pà€dioxin in herring gull hepatocyte cultures. Environmental Toxicology and Chemistry, 2010, 29, 2088-2095.	4.3	18
467	Great horned owl (<i>Bubo virginianus</i>) dietary exposure to PCDD/DF in the Tittabawassee River floodplain in Midland, Michigan, USA. Environmental Toxicology and Chemistry, 2010, 29, 2350-2362.	4.3	3
468	Ecological risk assessment of great horned owls (<i>Bubo virginianus</i>) exposed to PCDD/DF in the Tittabawassee River floodplain in Midland, Michigan, USA. Environmental Toxicology and Chemistry, 2010, 29, 2341-2349.	4.3	6

#	Article	IF	CITATIONS
469	Tissueâ€based risk assessment of great blue heron (<i>Ardea herodias</i>) exposed to PCDD/DF in the Tittabawassee River floodplain, Michigan, USA. Environmental Toxicology and Chemistry, 2010, 29, 2544-2558.	4.3	4
470	Effects of sulfathiazole, oxytetracycline and chlortetracycline on steroidogenesis in the human adrenocarcinoma (H295R) cell line and freshwater fish Oryzias latipes. Journal of Hazardous Materials, 2010, 182, 494-502.	12.4	60
471	Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 2010, 1217, 506-513.	3.7	94
472	Organochlorine pesticides (HCHs and DDTs) in soils along the north coastal areas of the Bohai Sea, China. Chemistry and Ecology, 2010, 26, 339-352.	1.6	14
473	Alberta oil sands development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 951-952.	7.1	138
474	Cytochrome P4501A Induction by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Two Chlorinated Dibenzofurans in Primary Hepatocyte Cultures of Three Avian Species. Toxicological Sciences, 2010, 113, 380-391.	3.1	54
475	Interconversion of Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in Japanese Medaka. Environmental Science & Eamp; Technology, 2010, 44, 8729-8735.	10.0	98
476	Tissue Concentrations of Polybrominated Compounds in Chinese Sturgeon (<i>Acipenser sinensis</i>): Origin, Hepatic Sequestration, and Maternal Transfer. Environmental Science & Dright, Technology, 2010, 44, 5781-5786.	10.0	64
477	Hydroxylated Polybrominated Diphenyl Ethers and Bisphenol A in Pregnant Women and Their Matching Fetuses: Placental Transfer and Potential Risks. Environmental Science & Echnology, 2010, 44, 5233-5239.	10.0	143
478	Contribution of Synthetic and Naturally Occurring Organobromine Compounds to Bromine Mass in Marine Organisms. Environmental Science & Environmental S	10.0	43
479	Tissue Distribution and Maternal Transfer of Poly- and Perfluorinated Compounds in Chinese Sturgeon (<i>Acipenser sinensis</i>): Implications for Reproductive Risk. Environmental Science & Emp; Technology, 2010, 44, 1868-1874.	10.0	106
480	PCB concentrations in walleyes and their prey from the Saginaw River, Lake Huron: A comparison between 1990 and 2007. Journal of Great Lakes Research, 2010, 36, 267-276.	1.9	20
481	Ethoxyresorufin O-deethylase induction by TCDD, PeCDF and TCDF in ring-necked pheasant and Japanese quail hepatocytes: Time-dependent effects on concentration–response curves. Toxicology in Vitro, 2010, 24, 1301-1305.	2.4	12
482	Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias) Tj ETQq0 (98, 256-264.	0 0 rgBT /0 4.0	Overlock 10 234
483	Standard purity and response factors of perfluorinated compounds. Toxicological and Environmental Chemistry, 2010, 92, 1219-1232.	1.2	8
484	Polycyclic aromatic hydrocarbons in soils of an industrial area of China: multivariate analyses and geostatistics. Chemistry and Ecology, 2010, 26, 35-48.	1.6	5
485	Evaluation and Spatial Diffusion of Health Risk of Persistent Organic Pollutants (POPs) in Soils Surrounding Chemical Industrial Parks in China. Human and Ecological Risk Assessment (HERA), 2010, 16, 989-1006.	3.4	12
486	Malformations of the endangered Chinese sturgeon, <i>Acipenser sinensis</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9339-9344.	7.1	116

#	Article	IF	Citations
487	Classification of Chemicals Based on Concentration-Dependent Toxicological Data Using ToxClust. Environmental Science & Enviro	10.0	13
488	Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds. Toxicology and Applied Pharmacology, 2009, 234, 306-313.	2.8	8
489	Endocrine-disrupting equivalents in industrial effluents discharged into Yangtze River. Ecotoxicology, 2009, 18, 685-692.	2.4	17
490	Risk to humans of consuming metals in anchovy (Coilia sp.) from the Yangtze River Delta. Environmental Geochemistry and Health, 2009, 31, 727-740.	3.4	21
491	Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment, 2009, 158, 507-517.	2.7	20
492	Distribution of Copper, Cadmium, and Lead in Soils from Former Industrialized Urban Areas of Beijing, China. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 378-383.	2.7	7
493	Hepatic P450 Enzyme Activity, Tissue Morphology and Histology of Mink (Mustela vison) Exposed to Polychlorinated Dibenzofurans. Archives of Environmental Contamination and Toxicology, 2009, 57, 416-425.	4.1	6
494	Perfluoroalkyl Acids in Marine Organisms from Lake Shihwa, Korea. Archives of Environmental Contamination and Toxicology, 2009, 57, 552-560.	4.1	61
495	Dioxin-Like and Endocrine Disruptive Activity of Traffic-Contaminated Soil Samples. Archives of Environmental Contamination and Toxicology, 2009, 57, 639-650.	4.1	20
496	Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography. Journal of Chromatography A, 2009, 1216, 4611-4617.	3.7	53
497	Relative Potencies of Individual Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons for Induction of Aryl Hydrocarbon Receptor-Mediated Responses. Environmental Science & Emp; Technology, 2009, 43, 2159-2165.	10.0	101
498	Origin of Hydroxylated Brominated Diphenyl Ethers: Natural Compounds or Man-Made Flame Retardants?. Environmental Science & En	10.0	209
499	Depuration kinetics and tissue disposition of PFOA and PFOS in white leghorn chickens (Gallus gallus) administered by subcutaneous implantation. Ecotoxicology and Environmental Safety, 2009, 72, 26-36.	6.0	68
500	In situ hybridization to detect spatial gene expression in medaka. Ecotoxicology and Environmental Safety, 2009, 72, 1257-1264.	6.0	10
501	Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro. Environment International, 2009, 35, 43-49.	10.0	34
502	Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: A potential issue in endocrine testing. Aquatic Toxicology, 2009, 95, 10-16.	4.0	34
503	Extinction Risk of Exploited Wild Roach (<i>Rutilus rutilus</i>) Populations Due to Chemical Feminization. Environmental Science & Emp; Technology, 2009, 43, 7895-7901.	10.0	34
504	Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood. Analytica Chimica Acta, 2008, 628, 214-221.	5.4	52

#	Article	IF	CITATIONS
505	Novel trends in endocrine disruptor testing: the H295R Steroidogenesis Assay for identification of inducers and inhibitors of hormone production. Analytical and Bioanalytical Chemistry, 2008, 390, 287-291.	3.7	63
506	Acute and Chronic Effects of Perfluorobutane Sulfonate (PFBS) on the Mallard and Northern Bobwhite Quail. Archives of Environmental Contamination and Toxicology, 2008, 54, 535-545.	4.1	72
507	Nondestructive Scat Sampling in Assessment of Mink (Mustela vison) Exposed to Polychlorinated Dibenzofurans (PCDFs). Archives of Environmental Contamination and Toxicology, 2008, 55, 529-537.	4.1	3
508	Risk assessment methodologies for exposure of great horned owls (<i>Bubo virginianus</i>) to PCBs on the Kalamazoo river, Michigan. Integrated Environmental Assessment and Management, 2008, 4, 24-40.	2.9	2
509	Measuring and monitoring persistent organic pollutants in the context of risk assessment. Marine Pollution Bulletin, 2008, 57, 236-244.	5.0	30
510	Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes). Toxicology and Applied Pharmacology, 2008, 232, 226-235.	2.8	26
511	Effects of Atrazine on Fish, Amphibians, and Aquatic Reptiles: A Critical Review. Critical Reviews in Toxicology, 2008, 38, 721-772.	3.9	226
512	Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line. Toxicology Letters, 2008, 176, 230-238.	0.8	113
513	In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicology Letters, 2008, 183, 65-71.	0.8	127
514	Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquatic Toxicology, 2008, 86, 131-141.	4.0	122
515	Real-time PCR array to study effects of chemicals on the Hypothalamic–Pituitary–Gonadal axis of the Japanese medaka. Aquatic Toxicology, 2008, 88, 173-182.	4.0	124
516	Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro. Aquatic Toxicology, 2008, 89, 172-179.	4.0	30
517	Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Research, 2008, 42, 395-403.	11.3	421
518	Cytotoxicity of HC Orange NO. 1 to L929 fibroblast cells. Environmental Toxicology and Pharmacology, 2008, 26, 309-314.	4.0	16
519	Toxicity reference values for mink exposed to 2,3,7,8-tetrachlodibenzo-p-dioxin (TCDD) equivalents (TEQs). Ecotoxicology and Environmental Safety, 2008, 69, 325-349.	6.0	21
520	Perfluorinated Compounds and Total and Extractable Organic Fluorine in Human Blood Samples from China. Environmental Science & Echnology, 2008, 42, 8140-8145.	10.0	160
521	Perfluoroalkyl Acids in the Egg Yolk of Birds from Lake Shihwa, Korea. Environmental Science & Emp; Technology, 2008, 42, 5821-5827.	10.0	70
522	Risk Assessment of Organohalogenated Compounds in Water Bird Eggs from South China. Environmental Science & Environmental Scie	10.0	46

#	Article	IF	Citations
523	Responses of the Medaka HPG Axis PCR Array and Reproduction to Prochloraz and Ketoconazole. Environmental Science & Environmen	10.0	82
524	Toxicokinetics Of 2,3,7,8-TCDF and 2,3,4,7,8-PeCDF in Mink (Mustela vison) at Ecologically Relevant Exposures. Toxicological Sciences, 2008, 105, 33-43.	3.1	16
525	Site-Specific Assessments of Environmental Risk and Natural Resource Damage Based on Great Horned Owls. Human and Ecological Risk Assessment (HERA), 2007, 13, 966-985.	3.4	4
526	Human Exposure to Dioxin-Like Compounds in Fish and Shellfish Consumed in South Korea. Human and Ecological Risk Assessment (HERA), 2007, 13, 223-235.	3.4	22
527	Monitoring of Exposure to and Potential Effects of Contaminants in the Environment. Environmental Bioindicators, 2007, 2, 129-130.	0.4	0
528	Determinations of dioxinlike activity in selected mollusks from the coast of the Bohai Sea, China, using the H4llE-luc bioassay. Ecotoxicology and Environmental Safety, 2007, 67, 157-162.	6.0	2
529	Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals. Ecotoxicology and Environmental Safety, 2007, 68, 20-32.	6.0	66
530	Changes of AhR-mediated activity of humic substances after irradiation. Environment International, 2007, 33, 812-816.	10.0	9
531	Effects of perfluorooctane sulfonate on mallard and northern bobwhite quail exposed chronically via the diet. Environmental Toxicology and Pharmacology, 2007, 23, 1-9.	4.0	87
532	Reproductive success of passerines exposed to polychlorinated biphenyls through the terrestrial food web of the Kalamazoo River. Ecotoxicology and Environmental Safety, 2007, 66, 107-118.	6.0	12
533	Chapter 2 Emission, Contamination and Exposure, Fate and Transport, and National Management Strategy of Persistent Organic Pollutants in South Korea. Developments in Environmental Science, 2007, 7, 31-157.	0.5	23
534	Spatial and Temporal Trends of Mercury Loadings to Michigan Inland Lakes. Environmental Science & Envi	10.0	15
535	The occurrence of selected antibiotics in Hong Kong coastal waters. Marine Pollution Bulletin, 2007, 54, 1287-1293.	5.0	155
536	Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds. Toxicology and Applied Pharmacology, 2007, 225, 142-153.	2.8	57
537	RISK ASSESSMENT OF GREAT HORNED OWLS (BUBO VIRGINIANUS) EXPOSED TO POLYCHLORINATED BIPHENYLS AND DDT ALONG THE KALAMAZOO RIVER, MICHIGAN, USA. Environmental Toxicology and Chemistry, 2007, 26, 1386.	4.3	19
538	Perfluorooctane Sulfonate Increases the Genotoxicity of Cyclophosphamide in the Micronucleus Assay with V79 Cells: Further Proof of Alterations in Cell Membrane Properties Caused by PFOS (3 pp). Environmental Science and Pollution Research, 2007, 14, 85-87.	5. 3	39
539	Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environmental Geochemistry and Health, 2007, 29, 459-471.	3.4	142
540	Organochlorine pesticides in soils around Guanting Reservoir, China. Environmental Geochemistry and Health, 2007, 29, 491-501.	3.4	27

#	Article	IF	CITATIONS
541	Health Risks in Infants Associated with Exposure to Perfluorinated Compounds in Human Breast Milk from Zhoushan, China. Environmental Science & Environmental Science & 2006, 40, 2924-2929.	10.0	253
542	Nonylphenol Isomers Differ in Estrogenic Activity. Environmental Science & Echnology, 2006, 40, 5147-5153.	10.0	136
543	Perfluorooctanesulfonate and Related Fluorochemicals in Human Blood Samples from China. Environmental Science & Technology, 2006, 40, 715-720.	10.0	308
544	Occurrence of Estrogenic Compounds in and Removal by a Swine Farm Waste Treatment Plant. Environmental Science & Environmental	10.0	83
545	Exposure and Multiple Lines of Evidence Assessment of Risk for PCBs Found in the Diets of Passerine Birds at the Kalamazoo River Superfund Site, Michigan. Human and Ecological Risk Assessment (HERA), 2006, 12, 924-946.	3.4	10
546	Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquatic Toxicology, 2006, 76, 230-245.	4.0	108
547	Plasma steroid hormone concentrations, aromatase activities and GSI in ranid frogs collected from agricultural and non-agricultural sites in Michigan (USA). Aquatic Toxicology, 2006, 77, 153-166.	4.0	26
548	Quaternary benzo[c]phenathridine alkaloids sanguinarine and chelerythrine do not affect transcriptional activity of aryl hydrocarbon receptor: Analyses in rat hepatoma cell line H4llE.luc. Food and Chemical Toxicology, 2006, 44, 1466-1473.	3.6	19
549	Receptor-mediated in vitro bioassay for characterization of Ah-R-active compounds and activities in sediment from Korea. Chemosphere, 2006, 62, 1261-1271.	8.2	27
550	AhR-active compounds in sediments of the Haihe and Dagu Rivers, China. Chemosphere, 2006, 63, 1222-1230.	8.2	30
551	The H295R system for evaluation of endocrine-disrupting effects. Ecotoxicology and Environmental Safety, 2006, 65, 293-305.	6.0	86
552	Measurement of estrogenic activity in sediments from Haihe and Dagu River, China. Environment International, 2006, 32, 676-681.	10.0	39
553	Alteration of steroidogenesis in H295R cells by organic sediment contaminants and relationships to other endocrine disrupting effects. Environment International, 2006, 32, 749-757.	10.0	38
554	EFFECTS OF AIR CELL INJECTION OF PERFLUOROOCTANE SULFONATE BEFORE INCUBATION ON DEVELOPMENT OF THE WHITE LEGHORN CHICKEN (GALLUS DOMESTICUS) EMBRYO. Environmental Toxicology and Chemistry, 2006, 25, 227.	4.3	88
555	TREE SWALLOW (TACHYCINETA BICOLOR) EXPOSURE TO POLYCHLORINATED BIPHENYLS AT THE KALAMAZOO RIVER SUPERFUND SITE, MICHIGAN, USA. Environmental Toxicology and Chemistry, 2006, 25, 428.	4.3	29
556	CYTOTOXICITY AND ARYL HYDROCARBON RECEPTOR–MEDIATED ACTIVITY OF N-HETEROCYCLIC POLYCYCLIC AROMATIC HYDROCARBONS: STRUCTURE–ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 2006, 25, 1291.	4.3	45
557	EVALUATION OF THE METHOXYTRIAZINE HERBICIDE PROMETON USING A SHORT-TERM FATHEAD MINNOW REPRODUCTION TEST AND A SUITE OF IN VITRO BIOASSAYS. Environmental Toxicology and Chemistry, 2006, 25, 2143.	4.3	17
558	Sediment TCDD-EQs and EROD and MROD Activities in Ranid Frogs from Agricultural and Nonagricultural Sites in Michigan (USA). Archives of Environmental Contamination and Toxicology, 2006, 51, 467-477.	4.1	8

#	Article	IF	Citations
559	Pharmacokinetics and Acute Lethality of Perfluorooctanesulfonate (PFOS) to Juvenile Mallard and Northern Bobwhite. Archives of Environmental Contamination and Toxicology, 2006, 50, 411-420.	4.1	55
560	Organochlorine Insecticides in Mudflats of Hong Kong, China. Archives of Environmental Contamination and Toxicology, 2006, 50, 153-165.	4.1	12
561	Alkaline Digestion and Solid Phase Extraction Method for Perfluorinated Compounds in Mussels and Oysters from South China and Japan. Archives of Environmental Contamination and Toxicology, 2006, 50, 240-248.	4.1	105
562	Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: Hormone production. Toxicology and Applied Pharmacology, 2006, 217, 114-124.	2.8	169
563	Gene Expression Profiles in Rat Liver Treated With Perfluorooctanoic Acid (PFOA). Toxicological Sciences, 2006, 89, 93-107.	3.1	202
564	Distribution of PCDDs and PCDFs in Soils Collected from the Denver Front Range - Principal Components Analysis of Diffuse Dioxin Sources (10 pp). Environmental Science and Pollution Research, 2005, 12, 189-198.	5. 3	9
565	SQUAMOUS EPITHELIAL LESION OF THE MANDIBLES AND MAXILLAE OF WILD MINK (MUSTELA VISON) NATURALLY EXPOSED TO POLYCHLORINATED BIPHENYLS. Environmental Toxicology and Chemistry, 2005, 24, 674.	4.3	22
566	Activation of the aryl hydrocarbon receptor by berberine in HepG2 and H4IIE cells: Biphasic effect on CYP1A1. Biochemical Pharmacology, 2005, 70, 925-936.	4.4	71
567	Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China. Marine Pollution Bulletin, 2005, 50, 1036-1049.	5.0	67
568	Organochlorines and dioxin-like compounds in green-lipped mussels Perna viridis from Hong Kong mariculture zones. Marine Pollution Bulletin, 2005, 51, 677-687.	5.0	27
569	Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus) Tj ETQq1 1 0.78 Toxicology and Applied Pharmacology, 2005, 209, 95-104.	34314 rgB ⁻ 2.8	T /Overlock 28
570	Horizontal and Vertical Distribution of Estrogenic Activities in Sediments and Waters from Tokyo Bay, Japan. Archives of Environmental Contamination and Toxicology, 2005, 48, 209-216.	4.1	71
571	Perfluorinated Compounds in Aquatic Organisms at Various Trophic Levels in a Great Lakes Food Chain. Archives of Environmental Contamination and Toxicology, 2005, 48, 559-566.	4.1	432
572	Estrogenic and Dioxin-like Activities and Cytotoxicity of Sediments and Biota from Hong Kong Mudflats. Archives of Environmental Contamination and Toxicology, 2005, 48, 575-586.	4.1	11
573	Effects of Atrazine on CYP19 Gene Expression and Aromatase Activity in Testes and on Plasma Sex Steroid Concentrations of Male African Clawed Frogs (Xenopus laevis). Toxicological Sciences, 2005, 86, 273-280.	3.1	65
574	Quantitative RT-PCR Methods for Evaluating Toxicant-Induced Effects on Steroidogenesis Using the H295R Cell Line. Environmental Science & Environmenta	10.0	96
575	Assessment of laryngeal muscle and testicular cell types in <i>Xenopus laevis</i> (Anura Pipidae) inhabiting maize and nonâ€maize growing areas of South Africa. African Journal of Herpetology, 2005, 54, 69-76.	0.9	33
576	Response to Comment on "Gonadal Development of Larval MaleXenopus laevisExposed to Atrazine in Outdoor Microcosms― Environmental Science & Environmental Science & Technology, 2005, 39, 7759-7760.	10.0	5

#	Article	IF	CITATIONS
577	Population structure of the African Clawed Frog (<i>Xenopus laevis</i>) in maizeâ€growing areas with atrazine application versus nonâ€maizeâ€growing areas in South Africa. African Journal of Herpetology, 2005, 54, 61-68.	0.9	30
578	Differential Accumulation of Polychlorinated Biphenyl Congeners in the Aquatic Food Web at the Kalamazoo River Superfund Site, Michigan. Environmental Science & Echnology, 2005, 39, 5964-5974.	10.0	36
579	Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons in Sediments from Michigan Inland Lakes. Environmental Science & Environmental S	10.0	221
580	Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environmental Science & Emp; Technology, 2005, 39, 9357-9362.	10.0	127
581	Ecotoxicological Risk Assessment of Atrazine in Amphibians. ACS Symposium Series, 2005, , 124-137.	0.5	2
582	Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Ecotoxicology and Environmental Safety, 2005, 62, 160-173.	6.0	109
583	Instrumental and bioanalytical measures of dioxin-like and estrogenic compounds and activities associated with sediment from the Korean coast. Ecotoxicology and Environmental Safety, 2005, 61, 366-379.	6.0	53
584	Identification of genes responsive to PFOS using gene expression profiling. Environmental Toxicology and Pharmacology, 2005, 19, 57-70.	4.0	91
585	Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic acid. Environmental Toxicology and Pharmacology, 2005, 19, 153-160.	4.0	10
586	Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. Aquatic Toxicology, 2005, 72, 383-396.	4.0	81
587	Differential Accumulation of Polychlorinated Biphenyl Congeners in the Terrestrial Food Web of the Kalamazoo River Superfund Site, Michigan. Environmental Science & Echnology, 2005, 39, 5954-5963.	10.0	47
588	Gonadal Development of Larval MaleXenopus laevisExposed to Atrazine in Outdoor Microcosms. Environmental Science & Environment	10.0	67
589	RAPID COMMUNICATION: BACKGROUND CONCENTRATIONS OF DIOXINS, FURANS, AND PCBs IN SPRAGUE-DAWLEY RATS AND JUVENILE SWINE. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 845-850.	2.3	4
590	Assessment of the Effects of Chemicals on the Expression of Ten Steroidogenic Genes in the H295R Cell Line Using Real-Time PCR. Toxicological Sciences, 2004, 81, 78-89.	3.1	159
591	PLASMA SEX STEROID CONCENTRATIONS AND GONADAL AROMATASE ACTIVITIES IN AFRICAN CLAWED FROGS (XENOPUS LAEVIS) FROM SOUTH AFRICA. Environmental Toxicology and Chemistry, 2004, 23, 1996.	4.3	65
592	Assessment of potential exposure to agent orange and its associated TCDD. Environmental Science and Pollution Research, 2004, 11 , $347-348$.	5.3	11
593	Environmental fate and bioavailability of agent orange and its associated dioxin during the vietnam war. Environmental Science and Pollution Research, 2004, 11, 359-370.	5.3	55
594	Science-Based decision making to reduce risks from persistent organic pollutants (POPS) joint workshop of the chinese academy of sciences, SCOPE-China and the US National Academies Beijing, Peoples Republic of China, June 7–10. Environmental Science and Pollution Research, 2004, 11, 378-378.	5.3	0

#	Article	IF	Citations
595	Effects of Atrazine on Metamorphosis, Growth, and Gonadal Development in the Green Frog (Rana) Tj ETQq1	l 0.784314 r	gBT /Overlo
596	Atmospheric Deposition and Fluxes of Organochlorine Pesticides and Coplanar Polychlorinated Biphenyls in Aquatic Environments of Hong Kong, China. Environmental Science & Echnology, 2004, 38, 6513-6521.	10.0	21
597	Reproductive Responses of Common Carp (Cyprinus carpio) Exposed in Cages to Influent of the Las Vegas Wash in Lake Mead, Nevada, from Late Winter to Early Spring. Environmental Science & Eamp; Technology, 2004, 38, 6385-6395.	10.0	59
598	Comparison of Risk Assessment Methodologies for Exposure of Mink to PCBs on the Kalamazoo River, Michigan. Environmental Science & Environmental Scien	10.0	20
599	Peer Reviewed: Analytical Challenges Hamper Perfluoroalkyl Research. Environmental Science & Emp; Technology, 2004, 38, 248A-255A.	10.0	201
600	Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay. Water Research, 2004, 38, 4491-4501.	11.3	119
601	Perfluorinated Compounds in Coastal Waters of Hong Kong, South China, and Korea. Environmental Science & Environmental Science	10.0	368
602	Concentrations and profiles of polychlorinated biphenyls, -dibenzo-p-dioxins and -dibenzofurans in livers of mink from South Carolina and Louisiana, U.S.A. Environmental Monitoring and Assessment, 2003, 83, 17-33.	2.7	10
603	EXAMINATION OF REPRODUCTIVE ENDPOINTS IN GOLDFISH (CARASSIUS AURATUS) EXPOSED IN SITU TO MUNICIPAL SEWAGE TREATMENT PLANT EFFLUENT DISCHARGES IN MICHIGAN, USA. Environmental Toxicology and Chemistry, 2003, 22, 2416.	4.3	22
604	Oxidative Stress in Laboratory-Incubated Double-Crested Cormorant Eggs Collected from the Great Lakes. Archives of Environmental Contamination and Toxicology, 2003, 45, 533-546.	4.1	10
605	Associations between regional differences in polychlorinated biphenyls and dichlorodiphenyldichloroethylene in blood of nestling bald eagles and reproductive productivity. Environmental Toxicology and Chemistry, 2003, 22, 371-376.	4.3	31
606	Response of larval <i>Xenopus laevis</i> to atrazine: Assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environmental Toxicology and Chemistry, 2003, 22, 396-405.	4.3	167
607	An automated enantioselective isolation system for the study of estrogenic potencies: Study of the estrogenic activity of \hat{l}_{\pm} -hexachlorocyclohexane. Journal of Separation Science, 2003, 26, 903-907.	2.5	3
608	Removal of Estrogenic Activity from Municipal Waste Landfill Leachate Assessed with a Bioassay Based on Reporter Gene Expression. Environmental Science & Expression. Technology, 2003, 37, 3430-3434.	10.0	95
609	Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentration Profiles in Sediments and Flood-Plain Soils of the Tittabawassee River, Michigan. Environmental Science & Echnology, 2003, 37, 468-474.	10.0	107
610	Review of the effects of endocrine-disrupting chemicals in birds. Pure and Applied Chemistry, 2003, 75, 2287-2303.	1.9	78
611	In ovo exposure to 0,p -DDE affects sexual development but not sexual differentiation in Japanese medaka (Oryzias latipes) Environmental Health Perspectives, 2003, 111, 29-32.	6.0	39
612	SCRAM: A Scoring and Ranking System for Persistent, Bioaccumulative, and Toxic Substances for the North American Great Lakes-Resulting Chemical Scores and Rankings. Human and Ecological Risk Assessment (HERA), 2002, 8, 537-557.	3.4	33

#	Article	IF	CITATIONS
613	Inhibition of Gap Junctional Intercellular Communication by Perfluorinated Compounds in Rat Liver and Dolphin Kidney Epithelial Cell Lines in Vitro and Sprague-Dawley Rats in Vivo. Toxicological Sciences, 2002, 68, 429-436.	3.1	188
614	In Vitro Antiestrogenic Effects of Aryl Methyl Sulfone Metabolites of Polychlorinated Biphenyls and 2,2-Bis(4-chlorophenyl)-1,1-dichloroethene on 17beta-Estradiol-Induced Gene Expression in Several Bioassay Systems. Toxicological Sciences, 2002, 69, 362-372.	3.1	57
615	Distribution and Elimination of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Biphenyls, and p,pâ€~-DDE in Tissues of Bald Eagles from the Upper Peninsula of Michigan. Environmental Science & Technology, 2002, 36, 2789-2796.	10.0	45
616	Predicted Distribution and Ecological Risk Assessment of a "Segregated―Hydrofluoroether in the Japanese Environment. Environmental Science & Envi	10.0	16
617	Perfluorooctanesulfonate and Related Fluorinated Hydrocarbons in Mink and River Otters from the United States. Environmental Science & Environmental S	10.0	193
618	Concentrations and Profiles of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Soils from Korea. Environmental Science & Environmental Science	10.0	38
619	Peer Reviewed: Perfluorochemical Surfactants in the Environment. Environmental Science & Emp; Technology, 2002, 36, 146A-152A.	10.0	913
620	Perfluorooctanesulfonate and Related Fluorinated Hydrocarbons in Marine Mammals, Fishes, and Birds from Coasts of the Baltic and the Mediterranean Seas. Environmental Science & Environmental Science	10.0	380
621	Support of Science-Based Decisions Concerning the Evaluation of the Toxicology of Mixtures: A New Beginning. Regulatory Toxicology and Pharmacology, 2002, 36, 34-39.	2.7	73
622	Polychloronaphthalenes and Other Dioxin-like Compounds in Arctic and Antarctic Marine Food Webs. Environmental Science & Envir	10.0	145
623	Effects of chronic dietary exposure to environmentally relevant concentrations to 2,3,7,8-tetrachlorodibenzo-p-dioxin on survival, growth, reproduction and biochemical responses of female rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2002, 59, 35-53.	4.0	57
624	Effects of Primary Exposure to Environmental and Natural Estrogens on Vitellogenin Production in Carp (Cyprinus carpio) Hepatocytes. Toxicological Sciences, 2002, 67, 75-80.	3.1	27
625	Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Marine Pollution Bulletin, 2002, 45, 3-16.	5.0	121
626	Sources and distribution of polychlorinated dibenzoâ€ <i>p</i> à€dioxins and dibenzofurans in sediments from Masan Bay, Korea. Environmental Toxicology and Chemistry, 2002, 21, 245-252.	4.3	17
627	Toxaphene and other persistent organochlorine pesticides in three species of albatrosses from the north and south Pacific Ocean. Environmental Toxicology and Chemistry, 2002, 21, 413-423.	4.3	28
628	Analysis of trace organic contaminants in sediment, pore water, and water samples from Onsan Bay, Korea: Instrumental analysis and in vitro gene expression assay. Environmental Toxicology and Chemistry, 2002, 21, 1796-1803.	4.3	54
629	In vitro assessment of potential mechanismâ€specific effects of polybrominated diphenyl ethers. Environmental Toxicology and Chemistry, 2002, 21, 2431-2433.	4.3	19
630	Perfluorooctane Sulfonate in Oysters, Crassostrea virginica, from the Gulf of Mexico and the Chesapeake Bay, USA. Archives of Environmental Contamination and Toxicology, 2002, 42, 313-318.	4.1	101

#	Article	IF	Citations
631	Characterization of Estrogenic Activity of Riverine Sediments from the Czech Republic. Archives of Environmental Contamination and Toxicology, 2002, 43, 175-185.	4.1	33
632	Organochlorine pollutants [corrected] in California sea lions revisited. BMC Ecology, 2002, 2, 11.	3.0	42
633	Dioxin-like and non-dioxin like effects of polychlorinated biphenyls: Implications for risk assessment. Lakes and Reservoirs: Research and Management, 2002, 7, 139-181.	0.9	16
634	Assessing environmental change through chemical-sediment chronologies from inland lakes. Lakes and Reservoirs: Research and Management, 2002, 7, 217-230.	0.9	14
635	Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines. Environmental Toxicology, 2002, 17, 128-137.	4.0	194
636	IN VITRO ASSESSMENT OF POTENTIAL MECHANISM-SPECIFIC EFFECTS OF POLYBROMINATED DIPHENYL ETHERS. Environmental Toxicology and Chemistry, 2002, 21, 2431.	4.3	1
637	Polychlorinated-naphthalenes, -biphenyls, -dibenzo-p-dioxins, -dibenzofurans and p,p'-DDE in bluefin tuna, swordfish, cormorants and barn swallows from Italy. Ambio, 2002, 31, 207-11.	5.5	4
638	Analysis of trace organic contaminants in sediment, pore water, and water samples from Onsan Bay, Korea: instrumental analysis and in vitro gene expression assay. Environmental Toxicology and Chemistry, 2002, 21, 1796-803.	4.3	5
639	Identification and Quantitation of Nonylphenol Ethoxylates and Nonylphenol in Fish Tissues from Michigan. Environmental Science & Environmental Scienc	10.0	74
640	Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environmental Science & Emp; Technology, 2001, 35, 1339-1342.	10.0	2,216
641	In vitro response of fish and mammalian cells to complex mixtures of polychlorinated naphthalenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Aquatic Toxicology, 2001, 54, 125-141.	4.0	39
642	Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environmental Toxicology and Pharmacology, 2001, 10, 17-27.	4.0	92
643	The use of biomarkers in ecological risk assessment: recommendations from the Christchurch conference on Biomarkers in Ecotoxicology. Biomarkers, 2001, 6, 1-6.	1.9	95
644	Polychlorinated Naphthalenes, -Biphenyls, -Dibenzo-p-dioxins, and -Dibenzofurans in Double-Crested Cormorants and Herring Gulls from Michigan Waters of the Great Lakes. Environmental Science & Environmental Science & Technology, 2001, 35, 441-447.	10.0	91
645	Accumulation of Perfluorooctane Sulfonate in Marine Mammals. Environmental Science & Emp; Technology, 2001, 35, 1593-1598.	10.0	454
646	Perfluorooctane Sulfonate in Fish-Eating Water Birds Including Bald Eagles and Albatrosses. Environmental Science & Environmen	10.0	275
647	ldentification and Quantification of Estrogen Receptor Agonists in Wastewater Effluents. Environmental Science & Environmental	10.0	326
648	Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environmental Health Perspectives, 2001, 109, 1027-1031.	6.0	219

#	Article	IF	Citations
649	Global Biomonitoring of Perfluorinated Organics. Scientific World Journal, The, 2001, 1, 627-629.	2.1	49
650	Trace Organic Contaminants in Sediment and Water from Ulsan Bay and Its Vicinity, Korea. Archives of Environmental Contamination and Toxicology, 2001, 40, 141-150.	4.1	134
651	In Vitro Bioassay Determination of Dioxin-Like and Estrogenic Activity in Sediment and Water from Ulsan Bay and Its Vicinity, Korea. Archives of Environmental Contamination and Toxicology, 2001, 40, 151-160.	4.1	39
652	Organochlorine Pesticides, Polychlorinated Biphenyls, and Butyltin Compounds in Blubber and Livers of Stranded California Sea Lions, Elephant Seals, and Harbor Seals from Coastal California, USA. Archives of Environmental Contamination and Toxicology, 2001, 41, 90-99.	4.1	71
653	Accumulation of 2,3,7,8â€tetrachlorodibenzoâ€∢i>pàâ€dioxin by rainbow trout (⟨i>Onchorhynchus) Tj ETQq1 Chemistry, 2001, 20, 344-350.	1 0.78431 4.3	14 rgBT /Ov 28
654	Effects of nonylphenol ethoxylate exposure on reproductive output and bioindicators of environmental estrogen exposure in fathead minnows, <i>Pimephales promelas</i> Livitonmental Toxicology and Chemistry, 2001, 20, 510-522.	4.3	41
655	Persistent organochlorine pollutants in eggs of colonial waterbirds from Galveston Bay and East Texas, USA. Environmental Toxicology and Chemistry, 2001, 20, 608-617.	4.3	26
656	Identification and quantitation method for nonylphenol and lower oligomer nonylphenol ethoxylates in fish tissues. Environmental Toxicology and Chemistry, 2001, 20, 1870-1873.	4.3	36
657	Polychlorinated naphthalenes, biphenyls, dibenzoâ€ <i>p</i> i>a€dioxins, and dibenzofurans as well as polycyclic aromatic hydrocarbons and alkylphenols in sediment from the Detroit and Rouge Rivers, Michigan, USA. Environmental Toxicology and Chemistry, 2001, 20, 1878-1889.	4.3	109
658	2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> àêdioxin equivalents in tissue samples from three species in the Denver, Colorado, USA, metropolitan area. Environmental Toxicology and Chemistry, 2001, 20, 2433-2442.	4.3	8
659	Laboratory analyses of the potential toxicity of sedimentâ€associated polydimethylsiloxane to benthic macroinvertebrates. Environmental Toxicology and Chemistry, 2001, 20, 2611-2616.	4.3	7
660	Characterization of dioxinâ€like activity of sediments from a Czech River Basin. Environmental Toxicology and Chemistry, 2001, 20, 2768-2777.	4.3	61
661	Pharmaceuticals and Personal Care Products in the Waters of Lake Mead, Nevada. ACS Symposium Series, 2001, , 116-139.	0.5	43
662	Chlorpyrifos: Ecotoxicological Risk Assessment for Birds and Mammals in Corn Agroecosystems. Human and Ecological Risk Assessment (HERA), 2001, 7, 497-632.	3.4	39
663	Hormesis — does it have relevance at the population, community or ecosystem levels of organization?. Human and Experimental Toxicology, 2001, 20, 517-520.	2.2	9
664	ECOLOGICAL RISK ASSESSMENT OF PESTICIDES. Human and Ecological Risk Assessment (HERA), 2001, 7, 493-495.	3.4	3
665	EFFECTS OF NONYLPHENOL ETHOXYLATE EXPOSURE ON REPRODUCTIVE OUTPUT AND BIOINDICATORS OF ENVIRONMENTAL ESTROGEN EXPOSURE IN FATHEAD MINNOWS, PIMEPHALES PROMELAS. Environmental Toxicology and Chemistry, 2001, 20, 510.	4.3	9
666	Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by rainbow trout (Onchorhynchus mykiss) at environmentally relevant dietary concentrations. Environmental Toxicology and Chemistry, 2001, 20, 344-50.	4.3	4

#	Article	IF	CITATIONS
667	Identification and quantitation of nonylphenol ethoxylates and nonylphenol in fish tissues from Michigan. Environmental Science & Environmental Scienc	10.0	5
668	Polychlorinated naphthalenes, biphenyls, dibenzo-p-dioxins, and dibenzofurans as well as polycyclic aromatic hydrocarbons and alkylphenols in sediment from the Detroit and Rouge Rivers, Michigan, USA. Environmental Toxicology and Chemistry, 2001, 20, 1878-89.	4.3	19
669	2,3,7,8-Tetrachlorodibenzo-p-dioxin equivalents in tissue samples from three species in the Denver, Colorado, USA, metropolitan area. Environmental Toxicology and Chemistry, 2001, 20, 2433-42.	4.3	0
670	Laboratory analyses of the potential toxicity of sediment-associated polydimethylsiloxane to benthic macroinvertebrates. Environmental Toxicology and Chemistry, 2001, 20, 2611-6.	4.3	2
671	Toxic responses of medaka, Dâ€rR strain, to polychlorinatednaphthalene mixtures after embryonic exposure by in ovo nanoinjection: A partial lifeâ€cycle assessment. Environmental Toxicology and Chemistry, 2000, 19, 432-440.	4.3	34
672	Changes in cytochrome P4501A activity during development in common tern chicks fed polychlorinated biphenyls, as measured by the caffeine breath test. Environmental Toxicology and Chemistry, 2000, 19, 712-718.	4.3	8
673	Polychlorinated biphenyls, organochlorine pesticides, tris(4â€chlorophenyl)methane, and tris(4â€chlorophenyl)methanol in livers of small cetaceans stranded along Florida coastal waters, USA. Environmental Toxicology and Chemistry, 2000, 19, 1566-1574.	4.3	38
674	Derivation and application of relative potency estimates based on in vitro bioassay results. Environmental Toxicology and Chemistry, 2000, 19, 2835-2843.	4.3	248
675	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 115-115.	5.3	14
676	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 116-121.	5. 3	9
677	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 176-184.	5.3	18
678	Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environmental Science and Pollution Research, 2000, 7, 159-171.	5.3	137
679	Relative Potencies of Individual Polychlorinated Naphthalenes to Induce Dioxin-Like Responses in Fish and Mammalian In Vitro Bioassays. Archives of Environmental Contamination and Toxicology, 2000, 39, 273-281.	4.1	216
680	Instrumental and Bioanalytical Measures of Persistent Organochlorines in Blue Mussel (Mytilus) Tj ETQq0 0 0 rgB 39, 360-368.	BT /Overloc 4.1	ck 10 Tf 50 2 42
681	Polychlorinated Dibenzo- p -Dioxins (PCDDs), Dibenzofurans (PCDFs), Biphenyls (PCBs), and Organochlorine Pesticides in Yellow-Blotched Map Turtle from the Pascagoula River Basin, Mississippi, USA. Archives of Environmental Contamination and Toxicology, 2000, 38, 362-370.	4.1	16
682	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 52-61.	5.3	27
683	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 219-219.	5.3	7
684	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environmental Science and Pollution Research, 2000, 7, 220-224.	5.3	16

#	Article	IF	CITATIONS
685	SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the north american great lakes. Environmental Science and Pollution Research, 2000, 7, 51-51.	5.3	12
686	Risk Assessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Equivalents in Tissue Samples from Three Species in the Denver Metropolitan Area. Human and Ecological Risk Assessment (HERA), 2000, 6, 1087-1099.	3.4	3
687	Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol- $17\hat{l}^2$ or \hat{l}_\pm -zearalenol. Journal of Steroid Biochemistry and Molecular Biology, 2000, 75, 109-119.	2.5	98
688	Toxicity Reference Values for the Toxic Effects of Polychlorinated Biphenyls to Aquatic Mammals. Human and Ecological Risk Assessment (HERA), 2000, 6, 181-201.	3.4	291
689	2-Chloro-s-Triazine Herbicides Induce Aromatase (CYP19) Activity in H295R Human Adrenocortical Carcinoma Cells: A Novel Mechanism for Estrogenicity?. Toxicological Sciences, 2000, 54, 121-127.	3.1	315
690	Concentrations and Profiles of Polychlorinated Naphthalene Congeners in Eighteen Technical Polychlorinated Biphenyl Preparations. Environmental Science & Eamp; Technology, 2000, 34, 4236-4241.	10.0	131
691	Vertical Profiles of Dioxin-like and Estrogenic Activities Associated with a Sediment Core from Tokyo Bay, Japan. Environmental Science & Eamp; Technology, 2000, 34, 3568-3573.	10.0	36
692	Relative Potencies of Individual Polychlorinated Naphthalenes and Halowax Mixtures To Induce Ah Receptor-Mediated Responses. Environmental Science & Environmental Science & 2000, 34, 3153-3158.	10.0	233
693	Response to Comment on "Occurrence of Butyltin Compounds in Human Blood― Environmental Science & Technology, 2000, 34, 1879-1880.	10.0	3
694	Polychlorinated Naphthalenes and Polychlorinated Biphenyls in Fishes from Michigan Waters Including the Great Lakes. Environmental Science & Environme	10.0	129
695	Vertical Profile of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Naphthalenes, Biphenyls, Polycyclic Aromatic Hydrocarbons, and Alkylphenols in a Sediment Core from Tokyo Bay, Japan. Environmental Science & Environmen	10.0	173
696	Effects of 4â€nonylphenol on fecundity and biomarkers of estrogenicity in fathead minnows (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2000, 19, 1368-1377.	4.3	25
697	CHANGES IN CYTOCHROME P4501A ACTIVITY DURING DEVELOPMENT IN COMMON TERN CHICKS FED POLYCHLORINATED BIPHENYLS, AS MEASURED BY THE CAFFEINE BREATH TEST. Environmental Toxicology and Chemistry, 2000, 19, 712.	4.3	1
698	BIOCHEMICAL AND DEVELOPMENTAL EFFECTS OF DIETARY EXPOSURE TO POLYCHLORINATED BIPHENYLS 126 AND 153 IN COMMON TERN CHICKS (STERNA HIRUNDO). Environmental Toxicology and Chemistry, 2000, 19, 719.	4.3	7
699	DERIVATION AND APPLICATION OF RELATIVE POTENCY ESTIMATES BASED ON IN VITRO BIOASSAY RESULTS. Environmental Toxicology and Chemistry, 2000, 19, 2835.	4.3	8
700	TOXIC RESPONSES OF MEDAKA, d-rR STRAIN, TO POLYCHLORINATED NAPHTHALENE MIXTURES AFTER EMBRYONIC EXPOSURE BY IN OVO NANOINJECTION: A PARTIAL LIFE-CYCLE ASSESSMENT. Environmental Toxicology and Chemistry, 2000, 19, 432.	4.3	29
701	Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Central European Journal of Public Health, 2000, 8 Suppl, 43-5.	1.1	3
702	Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay. Toxicological Sciences, 1999, 50, 206-213.	3.1	60

#	Article	IF	Citations
703	In VitroVitellogenin Production by Carp (Cyprinus carpio) Hepatocytes as a Screening Method for Determining (Anti)Estrogenic Activity of Xenobiotics. Toxicology and Applied Pharmacology, 1999, 157, 68-76.	2.8	100
704	Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Dibenzofurans (PCDFs) in Muscle and Eggs of Salmonid Fishes from the Great Lakes. Archives of Environmental Contamination and Toxicology, 1999, 36, 432-446.	4.1	18
705	Butyltin Compounds in River Otters (Lutra canadensis) from the Northwestern United States. Archives of Environmental Contamination and Toxicology, 1999, 36, 462-468.	4.1	32
706	Characterization and Distribution of Trace Organic Contaminants in Sediment from Masan Bay, Korea. 1. Instrumental Analysis. Environmental Science & Environmental Science & 1. Instrumental Analysis. Environmental Science & 200 (1999), 33, 4199-4205.	10.0	225
707	Butyltin compounds in sediment and fish from the Polish Coast of the Baltic Sea. Environmental Science and Pollution Research, 1999, 6, 200-206.	5.3	48
708	Rainbow trout cell bioassayâ€derived relative potencies for halogenated aromatic hydrocarbons: Comparison and sensitivity analysis. Environmental Toxicology and Chemistry, 1999, 18, 879-888.	4.3	25
709	Bioaccumulation profiles of polychlorinated biphenyl congeners and organochlorine pesticides in Ganges river dolphins. Environmental Toxicology and Chemistry, 1999, 18, 1511-1520.	4.3	83
710	Effects of exposure to municipal wastewater in situ on the reproductive physiology of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 1999, 18, 2001-2012.	4.3	55
711	Relationship between polychlorinated biphenyl 126 treatment and cytochrome p4501a activity in chickens, as measured by in vivo caffeine and ex vivo ethoxyresorufin metabolism. Environmental Toxicology and Chemistry, 1999, 18, 2013-2022.	4.3	6
712	Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: Instrumental and bioanalytical characterization. Environmental Toxicology and Chemistry, 1999, 18, 2424-2432.	4.3	87
713	Effects of waterborne exposure of $17\hat{l}^2$ -estradiol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). Aquatic Toxicology, 1999, 47, 129-145.	4.0	154
714	Specific binding of hydroxylated polychlorinated biphenyl metabolites and other substances to bovine calf uterine estrogen receptor: structure-binding relationships. Science of the Total Environment, 1999, 233, 141-161.	8.0	39
715	Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures. Environmental Science & Environmental S	10.0	367
716	Occurrence of Butyltin Compounds in Human Blood. Environmental Science & Envir	10.0	241
717	Extractable Organohalogens (EOX) in Sediment and Biota Collected at an Estuarine Marsh near a Former Chloralkali Facility. Environmental Science & Extractable 1999, 33, 1004-1008.	10.0	31
718	Characterization and Distribution of Trace Organic Contaminants in Sediment from Masan Bay, Korea. 2. In Vitro Gene Expression Assays. Environmental Science & Expression Assays. Environmental Science & Expression Assays.	10.0	79
719	Effects of Waterborne Exposure to 4-Nonylphenol and Nonylphenol Ethoxylate on Secondary Sex Characteristics and Gonads of Fathead Minnows (Pimephales promelas). Environmental Research, 1999, 80, S122-S137.	7.5	118
720	Instrumental and Bioanalytical Measures of Endocrine Disruptors in Water. ACS Symposium Series, 1999, , 73-95.	0.5	10

#	Article	IF	Citations
721	BIOACCUMULATION PROFILES OF POLYCHLORINATED BIPHENYL CONGENERS AND ORGANOCHLORINE PESTICIDES IN GANGES RIVER DOLPHINS. Environmental Toxicology and Chemistry, 1999, 18, 1511.	4.3	9
722	ALKYLPHENOLS, POLYCYCLIC AROMATIC HYDROCARBONS, AND ORGANOCHLORINES IN SEDIMENT FROM LAKE SHIHWA, KOREA:INSTRUMENTAL AND BIOANALYTICAL CHARACTERIZATION. Environmental Toxicology and Chemistry, 1999, 18, 2424.	4.3	83
723	Trends of Contaminants and Effects in Bald Eagles of the Great Lakes Basin. Environmental Monitoring and Assessment, 1998, 53, 197-212.	2.7	35
724	Concentrations and Hazard Assessment of Organochlorine Contaminants and Mercury in Smallmouth Bass from a Remote Lake in the Upper Peninsula of Michigan. Archives of Environmental Contamination and Toxicology, 1998, 34, 81-86.	4.1	36
725	Induction of erod activity in HEPAâ€1 mouse hepatoma cells and estrogenicity in mcfâ€7 human breast cancer cells by extracts of pulp mill effluents, sludge, and sediment exposed to effluents. Environmental Toxicology and Chemistry, 1998, 17, 1499-1507.	4.3	33
726	Hydroxylated and methylsulfonyl polychlorinated biphenyl metabolites in albatrosses from Midway Atoll, North Pacific Ocean. Environmental Toxicology and Chemistry, 1998, 17, 1620-1625.	4.3	71
727	In vitro induction of ethoxyresorufinâ€∢i>O⟨/i>â€deethylase and porphyrins by halogenated aromatic hydrocarbons in avian primary hepatocytes. Environmental Toxicology and Chemistry, 1998, 17, 2006-2018.	4.3	46
728	Occurrence of Butyltin Compounds in Tissues of Water Birds and Seaducks from the United States and Canada. Archives of Environmental Contamination and Toxicology, 1998, 35, 64-69.	4.1	23
729	Low Reproductive Rates of Lake Superior Bald Eagles: Low Food Delivery Rates or Environmental Contaminants?. Journal of Great Lakes Research, 1998, 24, 32-44.	1.9	39
730	Isomer-Specific Analysis and Toxic Evaluation of Polychlorinated Naphthalenes in Soil, Sediment, and Biota Collected near the Site of a Former Chlor-Alkali Plant. Environmental Science & Eamp; Technology, 1998, 32, 2507-2514.	10.0	161
731	Butyltin Residues in Southern Sea Otters (Enhydra lutris nereis) Found Dead along California Coastal Waters. Environmental Science & Environmental Sci	10.0	88
732	Dioxin-Like and Non-Dioxin-Like Toxic Effects of Polychlorinated Biphenyls (PCBs): Implications For Risk Assessment. Critical Reviews in Toxicology, 1998, 28, 511-569.	3.9	401
733	Bioaccumulation and Toxic Potential of Extremely Hydrophobic Polychlorinated Biphenyl Congeners in Biota Collected at a Superfund Site Contaminated with Aroclor 1268. Environmental Science & Emp; Technology, 1998, 32, 1214-1221.	10.0	89
734	Congener profile of polychlorinated/brominated dibenzoâ€pâ€dioxins and dibenzofurans in soil and sediments collected at a former chlorâ€alkali plant. Toxicological and Environmental Chemistry, 1998, 67, 135-146.	1.2	42
735	Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife Environmental Health Perspectives, 1998, 106, 775-792.	6.0	2,883
736	HYDROXYLATED AND METHYLSULFONYL POLYCHLORINATED BIPHENYL METABOLITES IN ALBATROSSES FROM MIDWAY ATOLL, NORTH PACIFIC OCEAN. Environmental Toxicology and Chemistry, 1998, 17, 1620.	4.3	2
737	Retinoids in eggs and embryos of birds fed fish from the Great Lakes. Environmental Toxicology and Pharmacology, 1997, 3, 277-288.	4.0	7
738	PCBs in the Detroit River Water Column. Journal of Great Lakes Research, 1997, 23, 440-449.	1.9	21

#	Article	IF	CITATIONS
739	Hydroxylated Polychlorinated Biphenyl Metabolites Are Anti-estrogenic in a Stably Transfected Human Breast Adenocarcinoma (MCF7) Cell Line. Toxicology and Applied Pharmacology, 1997, 144, 363-376.	2.8	88
740	Organochlorine Contaminants in Double-Crested Cormorants from Green Bay, Wisconsin: II. Effects of an Extract Derived from Cormorant Eggs on the Chicken Embryo. Archives of Environmental Contamination and Toxicology, 1997, 32, 316-322.	4.1	20
741	Development of a caffeine breath test to measure cytochrome P450-1A activity in birds. Environmental Toxicology and Pharmacology, 1996, 1, 51-61.	4.0	6
742	Species-Specific Recombinant Cell Lines as Bioassay Systems for the Detection of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-like Chemicals. Fundamental and Applied Toxicology, 1996, 30, 194-203.	1.8	369
743	Chemical-Activated Luciferase Gene Expression (CALUX): A Novelin VitroBioassay for Ah Receptor Active Compounds in Sediments and Pore Water. Fundamental and Applied Toxicology, 1996, 33, 149-160.	1.8	283
744	Selenium Bioaccumulation and Hazards in a Fish Community Affected by Coal Fly Ash Effluent. Ecotoxicology and Environmental Safety, 1996, 35, 7-15.	6.0	38
745	Deformities, PCBs, and TCDD-Equivalents in Double-Crested Cormorants (Phalacrocorax auritus) and Caspian Terns (Hydroprogne caspia) of the Upper Great Lakes 1986–1991: Testing a Cause-Effect Hypothesis. Journal of Great Lakes Research, 1996, 22, 172-197.	1.9	70
746	Assessment of Sediment Quality in Dredged and Undredged Areas of the Trenton Channel of the Detroit River, Michigan USA, using the Sediment Quality Triad. Journal of Great Lakes Research, 1996, 22, 683-696.	1.9	21
747	Comparison of Ah Receptor-Mediated Luciferase and Ethoxyresorufin-O-deethylase Induction in H4IIE Cells: Implications for Their Use as Bioanalytical Tools for the Detection of Polyhalogenated Aromatic Hydrocarbons. Toxicology and Applied Pharmacology, 1996, 137, 316-325.	2.8	234
748	Effects of $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$, 5 -pentachlorobiphenyl (PCB 126) and $2,3,7,8$ -tetrachlorodibenzo-p-dioxin (TCDD) injected into the yolks of chicken (Gallus domesticus) eggs prior to incubation. Archives of Environmental Contamination and Toxicology, 1996, 31, 404-409.	4.1	63
749	A riskâ€based protocol to develop acceptable concentrations of bioaccumulative organic chemicals in sediments for the protection of piscivorous wildlife. Toxicological and Environmental Chemistry, 1996, 54, 243-259.	1.2	10
750	Effects induced by feeding organochlorine-contaminated carp from Saginaw Bay, Lake Huron, to laying White Leghorn hens. II. Embryotoxic and teratogenic effects. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1996, 49, 409-38.	2.3	3
751	Influences on copper bioaccumulation, growth, and survival of the midge, Chironomus tentans, in metal-contaminated sediments. Journal of Aquatic Ecosystem Health, 1995, 4, 157-168.	0.4	18
752	Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers: III. Implications for health of bald eagles. Archives of Environmental Contamination and Toxicology, 1995, 29, 309-321.	4.1	53
753	Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in eggs of double-crested cormorants from a colony near Green Bay, Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 1995, 29, 327-333.	4.1	19
754	Dietary exposure of mink to carp from Saginaw Bay, Michigan: 2. Hematology and liver pathology. Archives of Environmental Contamination and Toxicology, 1995, 29, 411-417.	4.1	30
755	Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in eggs of red-breasted mergansers near Green Bay, Wisconsin, USA, in 1977?78 and 1990. Archives of Environmental Contamination and Toxicology, 1995, 29, 52-60.	4.1	11
756	Effects of copper-contaminated sediments on Hyalella azteca, Daphnia magna, and Ceriodaphnia dubia: Survival, growth, and enzyme inhibition. Archives of Environmental Contamination and Toxicology, 1995, 29, 97-103.	4.1	19

#	Article	IF	CITATIONS
757	Dietary exposure of mink to carp from Saginaw Bay, Michigan. 1. Effects on reproduction and survival, and the potential risks to wild mink populations. Archives of Environmental Contamination and Toxicology, 1995, 28, 334-43.	4.1	114
758	Characterization studies of a semiâ€automated separation method for analysis ofnonâ€orthosubstituted polychlorinated biphenyl (PCB) congeners in environmental samples. Toxicological and Environmental Chemistry, 1995, 51, 229-241.	1.2	3
759	Concentrations of Dissolved and Particulate Polychlorinated Biphenyls in Water from the Saginaw River, Michigan. Journal of Great Lakes Research, 1995, 21, 219-233.	1.9	21
760	Using feathers to assess risk of mercury and selenium to bald eagle reproduction in the Great Lakes region. Archives of Environmental Contamination and Toxicology, 1994, 27, 294-298.	4.1	66
761	Contaminants in fishes from Great Lakes-influenced sections and above dams of three Michigan rivers. I: Concentrations of organo chlorine insecticides, polychlorinated biphenyls, dioxin equivalents, and mercury. Archives of Environmental Contamination and Toxicology, 1994, 27, 202-12.	4.1	39
762	Contaminants in fishes from Great Lakes-influenced sections and above dams of three Michigan rivers. II: Implications for health of mink. Archives of Environmental Contamination and Toxicology, 1994, 27, 213-23.	4.1	84
763	Immunoassay monitoring of polychlorinated biphenyls (PCBs) in the Great Lakes. Environmental Science and Pollution Research, 1994, 1, 69-74.	5. 3	17
764	Accumulation of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Equivalents by Double-Crested Cormorant (Phalacrocorax auritus, Pelicaniformes) Chicks in the North American Great Lakes. Ecotoxicology and Environmental Safety, 1994, 27, 192-209.	6.0	25
765	Deformities in birds of the Great Lakes region. Assigning causality. Environmental Science & Emp; Technology, 1994, 28, 128A-135A.	10.0	166
766	FLOW CYTOMETRIC DETERMINATION OF THE PHOTOINDUCED TOXICITY OF ANTHRACENE TO THE GREEN ALGA SELENASTRUM CAPRICORNUTUM. Environmental Toxicology and Chemistry, 1994, 13, 831.	4.3	7
767	Polychlorinated biphenyls and chlorinated insecticides in plasma of Caspian terns: Relationships with age, productivity, and colony site tenacity in the great lakes. Archives of Environmental Contamination and Toxicology, 1993, 24, 320-331.	4.1	61
768	Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower fox river and Green Bay, Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 1993, 24, 332-344.	4.1	94
769	2,3,7,8-Tetrachlorodibenzo-p-dioxin equivalents in tissues of birds at Green Bay, Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 1993, 24, 345-354.	4.1	58
770	Studies of Adenine Nucleotide Biochemistry in the Chediak-Higashi Syndrome. Experimental and Molecular Pathology, 1993, 58, 40-52.	2.1	1
771	Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on the Epidermal Growth Factor Receptor in Hepatic Plasma Membranes of Rainbow Trout. Toxicology and Applied Pharmacology, 1993, 118, 119-130.	2.8	9
772	Toxicity of Sediments and Sediment Pore Waters from the Grand Calumet River-Indiana Harbor, Indiana Area of Concern. Ecotoxicology and Environmental Safety, 1993, 26, 86-112.	6.0	43
773	Using the carotenoid biosynthesis inhibiting herbicide, Fluridone, to investigate the ability of carotenoid pigments to protect algae from the photo-induced toxicity of anthracene. Aquatic Toxicology, 1993, 27, 61-70.	4.0	29
774	A Comparison of Water Quality Criteria for the Great Lakes Based on Human and Wildlife Health. Journal of Great Lakes Research, 1993, 19, 789-807.	1.9	28

#	Article	IF	Citations
775	Caspian Tern Reproduction in the Saginaw Bay Ecosystem Following a 100-Year Flood Event. Journal of Great Lakes Research, 1993, 19, 96-108.	1.9	55
776	Bicarbonate as a Potential Confounding Factor in Cladoceran Toxicity Assessments of Pore Water from Contaminated Sediments. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 1633-1640.	1.4	33
777	Relationships Among Concentrations of Individual Polychlorinated Biphenyl (PCB) Congeners, 2,3,7,8-Tetrachlorodibenzo-P-Dioxin Equivalents (TCDD-EQ), and Rearing Mortality of Chinook Salmon (Oncorhynchus Tshawytscha) Eggs from Lake Michigan. Journal of Great Lakes Research, 1992, 18, 108-124.	1.9	37
778	Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin. Ecotoxicology and Environmental Safety, 1992, 23, 46-63.	6.0	61
779	Sediment pore water toxicity identification in the lower fox river and Green Bay, Wisconsin, using the microtox assay. Ecotoxicology and Environmental Safety, 1992, 23, 343-354.	6.0	12
780	Prediction of Concentrations of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Equivalents from Total Concentrations of Polychlorinated Biphenyls in Fish Fillets. Environmental Science & Environmental Science	10.0	56
781	Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy. Journal of Aquatic Ecosystem Health, 1992, 1, 193-200.	0.4	11
782	Characterization of the H4IIE rat hepatoma cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental samples. Environmental Science & Environmental Scie	10.0	232
783	Effects of ultraviolet radiation on the primary production of natural phytoplankton assemblages in Lake Michigan. Ecotoxicology and Environmental Safety, 1991, 22, 345-361.	6.0	54
784	Characterization of epidermal growth factor binding to hepatic plasma membranes of rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 1991, 83, 345-353.	1.8	4
785	H4IIE rat hepatoma cell bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in colonial fish-eating waterbird eggs from the Great Lakes. Archives of Environmental Contamination and Toxicology, 1991, 21, 91-101.	4.1	102
786	Bioassay-Derived 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin Equivalents in PCB-Containing Extracts from the Flesh and Eggs of Lake Michigan Chinook Salmon (<i>Oncorhynchus tshawytscha</i>) and Possible Implications for Reproduction. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 1685-1690.	1.4	77
787	Utility of the QSAR modeling system for predicting the toxicity of substances on the European inventory of existing commercial chemicalsa^—. Toxicological and Environmental Chemistry, 1990, 28, 167-188.	1.2	10
788	SETAC: PART OF THE SOLUTION OR PART OF THE PROBLEM?. Environmental Toxicology and Chemistry, 1990, 9, 1327.	4.3	2
789	USE OF LINEAR ORTHOGONAL CONTRASTS IN ANALYSIS OF ENVIRONMENTAL DATA. Environmental Toxicology and Chemistry, 1990, 9, 815.	4.3	11
790	Toxicity of Vertical Sediments in the Trenton Channel, Detroit River, Michigan, to Chironomus Tentans (Insecta: Chironomidae). Journal of Great Lakes Research, 1989, 15, 570-580.	1.9	17
791	Maternal transfer of bioactive polychlorinated aromatic hydrocarbons in spawning chinook salmon (Oncorhynchus tschawytscha). Marine Environmental Research, 1989, 28, 231-234.	2.5	19
792	Planar chlorinated hydrocarbons (PCHs) in colonial fish-eating waterbird eggs from the Great Lakes. Marine Environmental Research, 1989, 28, 505-508.	2.5	15

#	Article	IF	Citations
793	Freshwater Sediment Toxicity Bioassessment: Rationale for Species Selection and Test Design. Journal of Great Lakes Research, 1989, 15, 539-569.	1.9	159
794	In vitro mitogenesis of peripheral blood lymphocytes from rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 89, 25-35.	0.6	26
795	Toxicity of Detroit River Sediment Interstitial Water to the Bacterium Photobacterium Phosphoreum. Journal of Great Lakes Research, 1988, 14, 502-513.	1.9	34
796	The effect of short-term exposure to pentachlorophenol and osmotic stress on the free amino acid pool of the freshwater amphipodGammarus pseudolimnaeus Bousfield. Archives of Environmental Contamination and Toxicology, 1987, 16, 167-176.	4.1	16
797	Relationships Between Chlorinated Hydrocarbon Concentrations and Rearing Mortality of Chinook Salmon (Oncorhynchus Tshawytscha) Eggs from Lake Michigan. Journal of Great Lakes Research, 1986, 12, 82-98.	1.9	43
798	Effects of long-term exposure to pentachlorophenol on the free amino acid pool and energy reserves of the freshwater amphipod Gammarus pseudolimnaeus bousfield (crustacea, amphipoda). Ecotoxicology and Environmental Safety, 1986, 12, 233-251.	6.0	46
799	The histological and biochemical effects of cadmium exposure in the bluegill sunfish (Lepomis) Tj ETQq1 1 0.784	814 rgBT / 6.0	Overlock 10 24
800	UO22+-humate interactions in soft, acid, humate-rich waters. Journal of Environmental Radioactivity, 1986, 4, 39-64.	1.7	32
801	Free Amino Acid Pools of Five Species of Freshwater Oligochaetes. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43, 600-607.	1.4	3
802	Lysosomal enzyme release in the bluegill sunfish (Lepomis macrochirus Rafinesque) exposed to cadmium. Archives of Environmental Contamination and Toxicology, 1985, 14, 631-640.	4.1	15
803	The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology, 1985, 6, 133-146.	4.0	123
804	Sewage effluent biomonitoring. Ecotoxicology and Environmental Safety, 1985, 10, 22-39.	6.0	18
805	Sewage effluent biomonitoring. Ecotoxicology and Environmental Safety, 1985, 10, 40-52.	6.0	7
806	A thermal effluent as a sporadic cornucopia: effects on fish and zooplankton. Environmental Biology of Fishes, 1984, 11, 191-203.	1.0	15
807	Fate of anthracene in an artificial stream: A case study. Ecotoxicology and Environmental Safety, 1984, 8, 183-201.	6.0	17
808	Extraction efficiency of anthracene from sediments. Analytical Chemistry, 1983, 55, 1197-1200.	6.5	25
809	Copper speciation in soft, acid, humic waters: Effects on copper bioaccumulation by and toxicity to simocephalus serrulatus (Daphnidae). Science of the Total Environment, 1983, 28, 23-36.	8.0	44
810	Anthracene bioconcentration and biotransformation in chironomids: Effects of temperature and concentration. Environmental Pollution Series A, Ecological and Biological, 1983, 30, 175-188.	0.7	31

#	Article	IF	Citations
811	Humic Acids Reduce Bioaccumulation of Some Polycyclic Aromatic Hydrocarbons. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, s63-s69.	1.4	101
812	Changes in phosphoadenylate concentrations and adenylate energy charge as an integrated biochemical measure of stress in invertebrates: The effects of cadmium on the freshwater clamCorbicula fluminea. Toxicological and Environmental Chemistry, 1983, 6, 259-295.	1,2	39
813	Kinetics and biotransformation of benzo(a)pyrene inChironomus riparius. Archives of Environmental Contamination and Toxicology, 1982, 11, 25-31.	4.1	72
814	Fates of cadmium introduced into channels microcosm. Environment International, 1981, 5, 159-175.	10.0	15
815	Frequency Distributions of the Concentrations of Essential and Nonessential Elements in Largemouth Bass, Micropterus Salmoides. Ecology, 1981, 62, 456-468.	3.2	8
816	Errors in Determining Elemental Concentrations and the Structure of Interelement Correlation Matrices. Ecology, 1981, 62, 483-485.	3.2	4
817	The effect of season and location on phosphoadenylate concentrations and adenylate energy charge in two species of freshwater clams. Oecologia, 1981, 49, 1-7.	2.0	18
818	Cadmium and zinc accumulation and elimination by freshwater crayfish. Archives of Environmental Contamination and Toxicology, 1980, 9, 683-697.	4.1	47
819	Metal binding capacity of northern European surface waters for Cd, Cu, and Pb. Organic Geochemistry, 1980, 2, 57-67.	1.8	13
820	Tissue metal concentrations in two crayfish species cohabiting a tennessee cave stream. Oecologia, 1979, 44, 8-12.	2.0	44
821	Effects of chronic cadmium exposure on crayfish survival, growth, and tolerance to elevated temperatures. Archives of Environmental Contamination and Toxicology, 1979, 8, 449-456.	4.1	24
822	Arsenic concentrations in water and fish from Chautauqua Lake, New York. Environmental Biology of Fishes, 1978, 3, 361-367.	1.0	14
823	Particulate formation due to freezing humic waters. Water Resources Research, 1978, 14, 542-544.	4.2	26
824	Relative importance of food and water sources to cadmium uptake by Gambusia affinis (poeciliidae). Environmental Research, 1978, 16, 326-332.	7. 5	59
825	Frequency Distributions of Trace Metal Concentrations in Five Freshwater Fishes. Transactions of the American Fisheries Society, 1977, 106, 393-403.	1.4	102
826	Metals associated with organic carbon extracted from Okefenokee Swamp water. Chemical Geology, 1977, 20, 109-120.	3.3	48
827	Effects of Naturally Occurring Aquatic Organic Fractions on 241 Am Uptake by Scenedesmus obliquus (Chlorophyceae) and Aeromonas hydrophila (Pseudomonadaceae). Applied and Environmental Microbiology, 1977, 33, 89-96.	3.1	21
828	STIMULATION OF GROWTH IN SCENEDESMUS OBLIQUUS (CHLOROPHYCEAE) BY HUMIC ACIDS UNDER IRON LIMITED CONDITIONS1,2. Journal of Phycology, 1976, 12, 172-179.	2.3	23

ARTICLE IF CITATIONS

829 Does the African potato (Hypoxis hemerocallidea) activate the aryl hydrocarbon receptor in H4IIE-luc cells?.,0,,..