
Marja C P Timmermans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106056/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428, 84-88.	27.8	648
2	Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Developmental Cell, 2019, 48, 840-852.e5.	7.0	367
3	Pattern formation via small RNA mobility. Genes and Development, 2009, 23, 549-554.	5.9	358
4	Small RNAs are on the move. Nature, 2010, 467, 415-419.	27.8	244
5	Two small regulatory RNAs establish opposing fates of a developmental axis. Genes and Development, 2007, 21, 750-755.	5.9	242
6	Specification of adaxial cell fate during maize leaf development. Development (Cambridge), 2004, 131, 4533-4544.	2.5	219
7	Signals and prepatterns: new insights into organ polarity in plants. Genes and Development, 2009, 23, 1986-1997.	5.9	182
8	Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell, 2021, 33, 511-530.	6.6	162
9	The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature, 2003, 424, 438-443.	27.8	142
10	The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes and Development, 2013, 27, 596-601.	5.9	142
11	Regulation of Small RNA Accumulation in the Maize Shoot Apex. PLoS Genetics, 2009, 5, e1000320.	3.5	127
12	Plant MicroRNAs Display Differential 3' Truncation and Tailing Modifications That Are ARGONAUTE1 Dependent and Conserved Across Species. Plant Cell, 2013, 25, 2417-2428.	6.6	113
13	Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients. Developmental Cell, 2017, 43, 265-273.e6.	7.0	89
14	<i>ragged seedling2</i> Encodes an ARGONAUTE7-Like Protein Required for Mediolateral Expansion, but Not Dorsiventrality, of Maize Leaves Â. Plant Cell, 2010, 22, 1441-1451.	6.6	85
15	Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nature Communications, 2018, 9, 3107.	12.8	82
16	The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity. Plant Cell, 2016, 27, 3321-3335.	6.6	72
17	In situ localization of small RNAs in plants by using LNA probes. Nature Protocols, 2012, 7, 533-541.	12.0	62
18	The Sussex signal: insights into leaf dorsiventrality. Development (Cambridge), 2016, 143, 3230-3237.	2.5	52

MARJA C P TIMMERMANS

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of leafbladeless1-Regulated and Phased Small RNAs Underscores the Importance of the TAS3 ta-siRNA Pathway to Maize Development. PLoS Genetics, 2014, 10, e1004826.	3.5	49
20	Plant small RNAs as morphogens. Current Opinion in Cell Biology, 2012, 24, 217-224.	5.4	47
21	Developmental patterning by gradients of mobile small RNAs. Current Opinion in Genetics and Development, 2014, 27, 83-91.	3.3	46
22	Ancient trans-Acting siRNAs Confer Robustness and Sensitivity onto the Auxin Response. Developmental Cell, 2016, 36, 276-289.	7.0	44
23	Novel DICER-LIKE1 siRNAs Bypass the Requirement for DICER-LIKE4 in Maize Development. Plant Cell, 2015, 27, 2163-2177.	6.6	42
24	A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Research, 2019, 29, 1962-1973.	5.5	35
25	To move or not to move: roles and specificity of plant RNA mobility. Current Opinion in Plant Biology, 2020, 57, 52-60.	7.1	34
26	Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. Nature Plants, 2022, 8, 269-280.	9.3	27
27	PscB: A Browser to Explore Plant Single Cell RNA-Sequencing Data Sets. Plant Physiology, 2020, 183, 464-467.	4.8	26
28	In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes. Plant Cell, 2016, 28, 1783-1794.	6.6	25
29	Crafting a blueprint for single-cell RNA sequencing. Trends in Plant Science, 2022, 27, 92-103.	8.8	25
30	Genomic prediction of maize microphenotypes provides insights for optimizing selection and mining diversity. Plant Biotechnology Journal, 2020, 18, 2456-2465.	8.3	20
31	Small RNAs as plant morphogens. Current Topics in Developmental Biology, 2020, 137, 455-480.	2.2	17
32	Genome-wide analysis of plant miRNA action clarifies levels of regulatory dynamics across developmental contexts. Genome Research, 2021, 31, 811-822.	5.5	16
33	Sponging of glutamate at the outer plasma membrane surface reveals roles for glutamate in development. Plant Journal, 2022, 109, 664-674.	5.7	7
34	Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Molecular Biology and Evolution, 2018, 35, 2762-2772.	8.9	4
35	High-throughput single-cell RNA sequencing. Trends in Plant Science, 2022, 27, 104-105.	8.8	4
36	In Situ Localization of Small RNAs in Plants. Methods in Molecular Biology, 2019, 1932, 159-173.	0.9	0