Stefan Olsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8106048/publications.pdf

Version: 2024-02-01

126907 62596 11,061 84 33 80 citations h-index g-index papers 102 102 102 23165 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
4	The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Molecular Microbiology, 2006, 61, 1069-1080.	2.5	168
5	Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 1999, 144, 183-193.	7.3	141
6	Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiology Ecology, 2000, 33, 139-146.	2.7	129
7	Induction of Laccase Activity in Rhizoctonia solani by Antagonistic Pseudomonas fluorescens Strains and a Range of Chemical Treatments. Applied and Environmental Microbiology, 2001, 67, 2088-2094.	3.1	115
8	Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy, 2012, 8, 326-337.	9.1	99
9	Phosphoâ€imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas. New Phytologist, 2002, 154, 809-819.	7.3	82
10	Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 2011, 48, 217-224.	2.1	80
11	Two Novel Classes of Enzymes Are Required for the Biosynthesis of Aurofusarin in Fusarium graminearum. Journal of Biological Chemistry, 2011, 286, 10419-10428.	3.4	78
12	Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp Environmental Pollution, 2009, 157, 2806-2812.	7.5	72
13	Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiology Ecology, 1999, 30, 11-23.	2.7	69
14	Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biology and Fertility of Soils, 2003, 37, 190-197.	4.3	66
15	Determination of phospholipid ester-linked fatty acids and poly \hat{I}^2 -hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.). Canadian Journal of Microbiology, 1985, 31, 1113-1119.	1.7	64
16	Activation of caspase-like activity and poly (ADP-ribose) polymerase degradation during sporulation in Aspergillus nidulans. Fungal Genetics and Biology, 2004, 41, 361-368.	2.1	64
17	Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microbial Ecology, 2005, 49, 272-281.	2.8	62
18	Fungal translocation - creating and responding to environmental heterogeneity. The Mycologist, 2004, 18, 79-88.	0.4	59

#	Article	IF	CITATIONS
19	Transcriptomic profiling of microbe–microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani. BMC Research Notes, 2017, 10, 376.	1.4	58
20	Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycological Research, 1995, 99, 143-153.	2.5	57
21	Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource Technology, 2000, 73, 29-36.	9.6	56
22	Simultaneous, bidirectional translocation of 32 P and 33 P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytologist, 2001, 150, 189-194.	7.3	56
23	Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a β-scanner. FEMS Microbiology Ecology, 1996, 19, 171-180.	2.7	50
24	Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiology Ecology, 1998, 26, 109-120.	2.7	49
25	Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biology and Biochemistry, 2003, 35, 1507-1516.	8.8	46
26	Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiology Ecology, 2002, 40, 13-20.	2.7	45
27	Heavy trap formation byArthrobotrys oligosporain liquid culture. FEMS Microbiology Letters, 1985, 31, 17-21.	1.8	44
28	Evidence for diffusion being the mechanism of translocation in the hyphae of three molds. Experimental Mycology, 1991, 15, 302-309.	1.6	42
29	Realâ€time measurement of uptake and translocation of 137 Cs within mycelium of Schizophyllum commune Fr. by autoradiography followed by quantitative image analysis. New Phytologist, 1995, 129, 449-465.	7.3	40
30	A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS ONE, 2017, 12, e0187116.	2.5	40
31	Quantification of predatory and endoparasitic nematophagous fungi in soil. Microbial Ecology, 1987, 13, 89-93.	2.8	38
32	Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Letters, 1990, 73, 13-22.	1.8	37
33	The endosomal recycling of FgSnc1 by FgSnx41–FgSnx4 heterodimer is essential for polarized growth and pathogenicity in <i>Fusarium graminearum</i> . New Phytologist, 2018, 219, 654-671.	7.3	37
34	Agrarian diet and diseases of affluence – Do evolutionary novel dietary lectins cause leptin resistance?. BMC Endocrine Disorders, 2005, 5, 10.	2.2	35
35	Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs). G3: Genes, Genomes, Genetics, 2016, 6, 1585-1595.	1.8	35
36	The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Current Genetics, 2018, 64, 285-301.	1.7	32

#	Article	IF	CITATIONS
37	Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor. Applied Microbiology and Biotechnology, 2000, 54, 826-831.	3.6	30
38	Pseudomonas fluorescens DR54 Reduces Sclerotia Formation, Biomass Development, and Disease Incidence of Rhizoctonia solani Causing Damping-Off in Sugar Beet. Microbial Ecology, 2001, 42, 438-445.	2.8	30
39	Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by <i>Pseudomonas fluorescens</i> strain In5 is regulated by the LuxRâ€type transcriptional regulator NunF. MicrobiologyOpen, 2017, 6, e00516.	3.0	30
40	Hyphae-Colonizing Burkholderia sp.â€"A New Source of Biological Control Agents Against Sheath Blight Disease (Rhizoctonia solani AG1-IA) in Rice. Microbial Ecology, 2011, 62, 425-434.	2.8	27
41	Growth of Arthrobotrys superba from a birch wood resource base into soil determined by radioactive tracing. FEMS Microbiology Ecology, 2000, 31, 47-51.	2.7	26
42	Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide. Mycologia, 2000, 92, 216-221.	1.9	26
43	Translocation Induced Outgrowth of Fungi in Nutrient-free Environments. Journal of Theoretical Biology, 2000, 205, 73-84.	1.7	25
44	Three-dimensional outgrowth of a wood-rotting fungus added to a contaminated soil from a former gasworks site. Bioresource Technology, 2001, 78, 37-45.	9.6	24
45	Transfer of phosphorus from Rhizoctonia solani to the mycoparasite Arthrobotrys oligospora. Mycological Research, 1994, 98, 1065-1068.	2.5	23
46	Uptake of Glucose and Phosphorus by Growing Colonies of Fusarium oxysporum as Quantified by Image Analysis. Experimental Mycology, 1994, 18, 33-47.	1.6	23
47	Confocal Imaging of Living Fungal Hyphae Challenged with the Fungal Antagonist Viscosinamide. Mycologia, 2000, 92, 216.	1.9	23
48	Magnaporthe oryzae CK2 Accumulates in Nuclei, Nucleoli, at Septal Pores and Forms a Large Ring Structure in Appressoria, and Is Involved in Rice Blast Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 113.	3.9	22
49	Accumulation of radionuclides from radioactive substrata by some micromycetes. Journal of Environmental Radioactivity, 2003, 67, 119-130.	1.7	17
50	Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. International Journal of Molecular Sciences, 2017, 18, 1601.	4.1	17
51	Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biology and Biotechnology, 2019, 6, 1.	5.1	17
52	Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiological Research, 2022, 259, 127011.	5. 3	17
53	Growth of Verticillium dahliae Kleb. hyphae and of bacteria along the roots of rape (Brassica napus L.) seedlings. Canadian Journal of Microbiology, 1987, 33, 916-919.	1.7	16
54	A glass fiber filter technique for studying nutrient uptake by fungi: The technique used on colonies grown on nutrient gradients of carbon and phosphorus. Experimental Mycology, 1991, 15, 292-301.	1.6	16

#	Article	IF	CITATIONS
55	Low Concentration of Copper Inhibits Colonization of Soil by the Arbuscular Mycorrhizal Fungus Glomus intraradices and Changes the Microbial Community Structure. Microbial Ecology, 2011, 61, 844-852.	2.8	14
56	Microsclerotial germination of Verticillium dahliaeas affected by rape rhizosphere. FEMS Microbiology Letters, 1985, 31, 293-299.	1.8	13
57	A Microplate Reader-Based System for Visualizing Transcriptional Activity During in vivo Microbial Interactions in Space and Time. Scientific Reports, 2017, 7, 281.	3.3	13
58	Methylenetetrahydrofolate Reductase Activity Is Involved in the Plasma Membrane Redox System Required for Pigment Biosynthesis in Filamentous Fungi. Eukaryotic Cell, 2010, 9, 1225-1235.	3.4	12
59	Fungal-Associated Molecules Induce Key Genes Involved in the Biosynthesis of the Antifungal Secondary Metabolites Nunamycin and Nunapeptin in the Biocontrol Strain Pseudomonas fluorescens In5. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
60	Chapter 39 Ecology and Evolution of Fungal-Bacterial Interactions. Mycology, 2017, , 563-584.	0.5	11
61	Characterization of two infectionâ€induced transcription factors of <i>Magnaporthe oryzae</i> reveals their roles in regulating early infection and effector expression. Molecular Plant Pathology, 2022, 23, 1200-1213.	4.2	11
62	Long-term culturing of plants with aseptic roots. Determination of rape root exudates Plant, Cell and Environment, 1984, 7, 549-552.	5.7	10
63	Biological control of rice sheath blight using hyphae-associated bacteria: development of an in planta screening assay to predict biological control agent performance under field conditions. BioControl, 2018, 63, 843-853.	2.0	10
64	Colonial Growth of Fungi., 2001,, 125-141.		10
65	Growth of bacteria in the rhizoplane and the rhizosphere of rape seedlings. FEMS Microbiology Letters, 1988, 53, 355-360.	1.8	9
66	Draft Genome Sequence of $\langle i \rangle$ Pseudomonas $\langle i \rangle$ sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity. Genome Announcements, 2015, 3, .	0.8	9
67	Long-term culturing of plants with aseptic roots Determination of rape root exudates. Plant, Cell and Environment, 1984, 7, 549-552.	5.7	9
68	Digested wheat gluten inhibits binding between leptin and its receptor. BMC Biochemistry, 2015, 16, 3.	4.4	8
69	Conserved Eukaryotic Kinase CK2 Chaperone Intrinsically Disordered Protein Interactions. Applied and Environmental Microbiology, 2020, 86, .	3.1	8
70	Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiology Ecology, 2000, 33, 139-146.	2.7	8
71	Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiology Ecology, 1999, 30, 11-23.	2.7	6
72	Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei. Fungal Biology, 2015, 119, 551-559.	2.5	5

#	Article	IF	CITATIONS
73	A broad-host range dual-fluorescence reporter system for gene expression analysis in Gram-negative bacteria. Journal of Microbiological Methods, 2018, 144, 173-176.	1.6	5
74	A fast and simple method for classification of soil bacterial populations. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1984, 147, 198-202.	0.4	4
75	A NOTE Direct microscopy of Bacillus endospore germination in soil microcosms. Journal of Applied Microbiology, 2000, 89, 595-598.	3.1	4
76	Genome Wide Identification and Expression Profiles of TALE Genes in Pineapple (Ananas comosus L). Tropical Plant Biology, 2019, 12, 304-317.	1.9	3
77	A novel microcosm to identify inherently competitive microorganisms with the ability to mineralize phytate in solum. Soil Ecology Letters, 2021, 3, 367-382.	4.5	2
78	MoSep3 and MoExo70 are needed for MoCK2 ring assembly essential for appressorium function in the rice blast fungus, <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2021, 22, 1159-1164.	4.2	2
79	Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiology Ecology, 1998, 26, 109-120.	2.7	2
80	Continuous imaging in fungi. New Phytologist, 2002, 153, 6-7.	7.3	1
81	Microsclerotial germination of Verticillium dahliae as affected by rape rhizosphere. FEMS Microbiology Letters, 1985, 31, 293-299.	1.8	1
82	Imaging Gene Expression Dynamics in Pseudomonas fluorescens In5 during Interactions with the Fungus Fusarium graminearum PH-1. Bio-protocol, 2019, 9, e3264.	0.4	1
83	Degradation of Chitotetraose to Chitobiose in the Axenic Rape Rhizosphere. Journal of Experimental Botany, 1991, 42, 931-934.	4.8	0
84	Growth of Arthrobotrys superba from a birch wood resource base into soil determined by radioactive tracing. FEMS Microbiology Ecology, 2000, 31, 47-51.	2.7	0