
Sahel Ashhab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8105665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum simulation. Reviews of Modern Physics, 2014, 86, 153-185.	45.6	1,881
2	Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Reviews of Modern Physics, 2013, 85, 623-653.	45.6	1,212
3	Landau–Zener–Stückelberg interferometry. Physics Reports, 2010, 492, 1-30.	25.6	639
4	Natural and artificial atoms for quantum computation. Reports on Progress in Physics, 2011, 74, 104401.	20.1	569
5	Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nature Physics, 2017, 13, 44-47.	16.7	462
6	Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Physical Review A, 2010, 81, .	2.5	292
7	Nonperturbative theory of weak pre- and post-selected measurements. Physics Reports, 2012, 520, 43-133.	25.6	262
8	Low-decoherence flux qubit. Physical Review B, 2007, 75, .	3.2	203
9	Two-level systems driven by large-amplitude fields. Physical Review A, 2007, 75, .	2.5	203
10	Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Scientific Reports, 2013, 3, 2943.	3.3	150
11	Superradiance transition in a system with a single qubit and a single oscillator. Physical Review A, 2013, 87, .	2.5	120
12	COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Science of the Total Environment, 2021, 774, 145608.	8.0	120
13	Controllable Coherent Population Transfers in Superconducting Qubits for Quantum Computing. Physical Review Letters, 2008, 100, 113601.	7.8	107
14	Quantum Two-Level Systems in Josephson Junctions as Naturally Formed Qubits. Physical Review Letters, 2006, 97, 077001.	7.8	102
15	Observation of Floquet States in a Strongly Driven Artificial Atom. Physical Review Letters, 2015, 115, 133601.	7.8	92
16	Interqubit coupling mediated by a high-excitation-energy quantum object. Physical Review B, 2008, 77, .	3.2	75
17	Quantum algorithm for simulating the dynamics of an open quantum system. Physical Review A, 2011, 83, .	2.5	70
18	Using superconducting qubit circuits to engineer exotic lattice systems. Physical Review A, 2010, 82, .	2.5	69

#	Article	IF	CITATIONS
19	Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime. Physical Review Letters, 2018, 120, 183601.	7.8	69
20	Decoherence in a scalable adiabatic quantum computer. Physical Review A, 2006, 74, .	2.5	67
21	Speed limits for quantum gates in multiqubit systems. Physical Review A, 2012, 85, .	2.5	62
22	External Josephson effect in Bose-Einstein condensates with a spin degree of freedom. Physical Review A, 2002, 66, .	2.5	61
23	Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits. Nature Physics, 2010, 6, 763-766.	16.7	61
24	Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Physical Chemistry Chemical Physics, 2016, 18, 5219-5231.	2.8	61
25	Characteristic spectra of circuit quantum electrodynamics systems from the ultrastrong- to the deep-strong-coupling regime. Physical Review A, 2017, 95, .	2.5	60
26	Observation of Time-Domain Rabi Oscillations in the Landau-Zener Regime with a Single Electronic Spin. Physical Review Letters, 2014, 112, 010503.	7.8	55
27	Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites. Journal of Applied Physics, 1998, 83, 3929-3931.	2.5	52
28	Bose-Einstein condensation of spin-1/2 atoms with conserved total spin. Physical Review A, 2003, 68, .	2.5	51
29	Single-artificial-atom lasing using a voltage-biased superconducting charge qubit. New Journal of Physics, 2009, 11, 023030.	2.9	51
30	Control-free control: Manipulating a quantum system using only a limited set of measurements. Physical Review A, 2010, 82, .	2.5	48
31	Fully connected network of superconducting qubits in a cavity. New Journal of Physics, 2008, 10, 113020.	2.9	47
32	Lower limit on the achievable temperature in resonator-based sideband cooling. Physical Review B, 2008, 78, .	3.2	46
33	Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. Journal of Materials Chemistry A, 2019, 7, 26020-26028.	10.3	44
34	Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit. Physical Review Letters, 2020, 125, 180504.	7.8	42
35	Landau-Zener transitions in a two-level system coupled to a finite-temperature harmonic oscillator. Physical Review A, 2014, 90, .	2.5	40
36	Rabi oscillations in a qubit coupled to a quantum two-level system. New Journal of Physics, 2006, 8, 103-103.	2.9	39

#	Article	IF	CITATIONS
37	Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer. Physical Review A, 2009, 79, .	2.5	39
38	Amplitude spectroscopy of two coupled qubits. Physical Review B, 2012, 85, .	3.2	37
39	Inverse Landau-Zener-Stückelberg problem for qubit-resonator systems. Physical Review B, 2012, 85, .	3.2	37
40	Generalized switchable coupling for superconducting qubits using double resonance. Physical Review B, 2006, 74, .	3.2	34
41	Dynamics of a two-level system under strong driving: Quantum-gate optimization based on Floquet theory. Physical Review A, 2016, 94, .	2.5	34
42	Weak and strong measurement of a qubit using a switching-based detector. Physical Review A, 2009, 79, .	2.5	31
43	The information about the state of a qubit gained by a weakly coupled detector. New Journal of Physics, 2009, 11, 083017.	2.9	30
44	Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Communications Materials, 2021, 2, .	6.9	30
45	Quantum state transfer in a disordered one-dimensional lattice. Physical Review A, 2015, 92, .	2.5	29
46	Observing quantum nonlocality in the entanglement between modes of massive particles. Physical Review A, 2007, 75, .	2.5	25
47	Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. Scientific Reports, 2017, 7, 8902.	3.3	25
48	Quantum Simulation of Resonant Transitions for Solving the Eigenproblem of an Effective Water Hamiltonian. Physical Review Letters, 2019, 122, 090504.	7.8	25
49	Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk. Physical Review B, 2007, 76, .	3.2	24
50	Entanglement amplification via local weak measurements. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 415303.	2.1	24
51	Landau-Zener transitions in an open multilevel quantum system. Physical Review A, 2016, 94, .	2.5	24
52	Band-Gap Tuning in All-Inorganic CsPb <i>_x</i> Sn _{1–<i>x</i>} Br ₃ Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 4203-4210.	8.0	24
53	Generation of Macroscopic Entangled States in Coupled Superconducting Phase Qubits. Journal of the Physical Society of Japan, 2007, 76, 054802.	1.6	23
54	Detecting mode entanglement: The role of coherent states, superselection rules, and particle statistics. Physical Review A, 2007, 76, .	2.5	22

#	Article	IF	CITATIONS
55	Quantum algorithm for obtaining the energy spectrum of a physical system. Physical Review A, 2012, 85, .	2.5	20
56	Measurement theory and interference of spinor Bose-Einstein condensates. Physical Review A, 2002, 65, .	2.5	19
57	Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity. New Journal of Physics, 2012, 14, 073041.	2.9	19
58	Implementing general measurements on linear optical and solid-state qubits. Physical Review A, 2012, 85, .	2.5	19
59	Characterization of control in a superconducting qutrit using randomized benchmarking. Physical Review Research, 2021, 3, .	3.6	19
60	Information about the state of a charge qubit gained by a weakly coupled quantum point contact. Physica Scripta, 2009, T137, 014005.	2.5	18
61	Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates. New Journal of Physics, 2012, 14, 073038.	2.9	18
62	Attempt to find the hidden symmetry in the asymmetric quantum Rabi model. Physical Review A, 2020, 101, .	2.5	18
63	Superfluid vs Ferromagnetic Behavior in a Bose Gas of Spin-1/2 Atoms. Journal of Low Temperature Physics, 2005, 140, 51-65.	1.4	17
64	Quantum information processing using frequency control of impurity spins in diamond. Physical Review B, 2007, 76, .	3.2	17
65	Bell's experiment with intra- and inter-pair entanglement: Single-particle mode entanglement as a case study. Physical Review A, 2009, 80, .	2.5	16
66	Decoherence dynamics of a qubit coupled to a quantum two-level system. Physica C: Superconductivity and Its Applications, 2006, 444, 45-52.	1.2	14
67	Fast quantum communication in linear networks. Europhysics Letters, 2016, 114, 40007.	2.0	13
68	Observation of Structural Phase Transitions and PbI ₂ Formation During the Degradation of Triple-Cation Double-Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 6302-6309.	5.1	11
69	Superradiance phase transition in the presence of parameter fluctuations. Physical Review A, 2017, 95, .	2.5	9
70	Speed limits for two-qubit gates with weakly anharmonic qubits. Physical Review A, 2022, 105, .	2.5	9
71	Interference between a large number of independent Bose-Einstein condensates. Physical Review A, 2005, 71, .	2.5	8
72	Simulating systems of itinerant spin-carrying particles using arrays of superconducting qubits and resonators. New Journal of Physics, 2014, 16, 113006.	2.9	8

#	Article	IF	CITATIONS
73	Landau–Zener–Stueckelberg interferometry with driving fields in the quantum regime. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 134002.	2.1	7
74	Domain boundaries in Luttinger-Tisza ordered dipole lattices. Journal of Applied Physics, 2019, 125, .	2.5	6
75	Fast amplification and rephasing of entangled cat states in a qubit-oscillator system. Physical Review A, 2019, 99, .	2.5	6
76	Dynamics of interacting qubits in a strong alternating electromagnetic field. Physics of the Solid State, 2010, 52, 2281-2286.	0.6	5
77	Spectrum of the Dicke model in a superconducting qubit-oscillator system. Physical Review A, 2019, 99, .	2.5	5
78	Order in the ground state of a simple cubic dipole lattice in an external field. International Journal of Quantum Chemistry, 2020, 120, e26053.	2.0	5
79	Nonclassicality of open circuit QED systems in the deep-strong coupling regime. New Journal of Physics, 2021, 23, 103009.	2.9	5
80	Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register's wave function. Physical Review Research, 2022, 4, .	3.6	5
81	Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime. Scientific Reports, 2022, 12, 6764.	3.3	4
82	Unusual Bimodal Photovoltaic Performance of Perovskite Solar Cells at Real-World Operating Temperatures. Journal of Physical Chemistry C, 2020, 124, 9118-9125.	3.1	2
83	Effective hopping strength between supercells in a disordered tight-binding model. Computational Materials Science, 2018, 155, 534-540.	3.0	0
84	A GRASP approach for Symbolic Regression. , 2019, , .		0
85	Intermediate-scale Simulations of Lead-halide Perovskites Using Tight-binding and Spin Models. , 0, , .		0
86	Solution-processed Perovskite-colloidal Quantum Dot Tandem Solar Cells for Photon Collection Beyond 1000 nm. , 0, , .		0
87	Intermediate-scale Simulations of Lead-halide Perovskites Using Tight-binding and Spin Models. , 0, , .		Ο