Maja Rupnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8105272/publications.pdf

Version: 2024-02-01

89 papers

6,697 citations

94433 37 h-index 80 g-index

92 all docs 92 docs citations 92 times ranked 4406 citing authors

#	Article	IF	CITATIONS
1	Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature Reviews Microbiology, 2009, 7, 526-536.	28.6	1,249
2	Clostridium difficile infection in Europe: a hospital-based survey. Lancet, The, 2011, 377, 63-73.	13.7	924
3	Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiology Letters, 2000, 186, 307-312.	1.8	415
4	<i>Clostridium difficile</i> binary toxin CDT. Gut Microbes, 2014, 5, 15-27.	9.8	360
5	Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infectious Diseases, The, 2014, 14, 1208-1219.	9.1	308
6	A Novel Toxinotyping Scheme and Correlation of Toxinotypes with Serogroups of <i>Clostridium difficile</i> Isolates. Journal of Clinical Microbiology, 1998, 36, 2240-2247.	3.9	305
7	Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. Journal of Medical Microbiology, 2004, 53, 887-894.	1.8	144
8	Heterogeneity of large clostridial toxins: importance of <i>Clostridium difficile </i> toxinotypes. FEMS Microbiology Reviews, 2008, 32, 541-555.	8.6	142
9	New Types of Toxin A-Negative, Toxin B-Positive Strains among Clostridium difficile Isolates from Asia. Journal of Clinical Microbiology, 2003, 41, 1118-1125.	3.9	120
10	Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology (United Kingdom), 2001, 147, 439-447.	1.8	113
11	International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiology, 2014, 14, 173.	3.3	105
12	An Update on Clostridium difficile Toxinotyping. Journal of Clinical Microbiology, 2016, 54, 13-18.	3.9	96
13	Characterization of polymorphisms in the toxin A and B genes of Clostridium difficile. FEMS Microbiology Letters, 2006, 148, 197-202.	1.8	90
14	<i>Clostridium difficile</i> Toxinotype V, Ribotype 078, in Animals and Humans. Journal of Clinical Microbiology, 2008, 46, 2146-2146.	3.9	89
15	Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiology, 2012, 12, 48.	3.3	89
16	Revised nomenclature of Clostridium difficile toxins and associated genes. Journal of Medical Microbiology, 2005, 54, 113-117.	1.8	88
17	Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe, 2009, 15, 252-255.	2.1	88
18	Highly Divergent Clostridium difficile Strains Isolated from the Environment. PLoS ONE, 2016, 11, e0167101.	2.5	82

#	Article	IF	CITATIONS
19	Isolation of Clostridium difficile from food animals in Slovenia. Journal of Medical Microbiology, 2008, 57, 790-792.	1.8	81
20	High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe, 2008, 14, 325-327.	2.1	79
21	Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. Advances in Experimental Medicine and Biology, 2018, 1050, 227-243.	1.6	66
22	Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of Clostridium difficile. Journal of Clinical Microbiology, 2018, 56, .	3.9	64
23	Gut Microbiota Patterns Associated with Colonization of Different Clostridium difficile Ribotypes. PLoS ONE, 2013, 8, e58005.	2.5	63
24	The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe, 2010, 16, 371-375.	2.1	61
25	Clostridium difficile. Advances in Food and Nutrition Research, 2010, 60, 53-66.	3.0	58
26	Molecular Typing Methods for Clostridium difficile: Pulsed-Field Gel Electrophoresis and PCR Ribotyping. Methods in Molecular Biology, 2010, 646, 55-65.	0.9	56
27	Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe, 2012, 18, 484-488.	2.1	55
28	Clostridium difficile and Clostridioides difficile: Two validly published and correct names. Anaerobe, 2018, 52, 125-126.	2.1	55
29	New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. Journal of Medical Microbiology, 2011, 60, 1108-1111.	1.8	54
30	Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. Journal of Medical Microbiology, 2013, 62, 1478-1485.	1.8	54
31	Genomic diversity of Clostridium difficile strains. Research in Microbiology, 2015, 166, 353-360.	2.1	49
32	A New Type of Toxin A-Negative, Toxin B-Positive Clostridium difficile Strain Lacking a Complete <i>tcdA</i> Gene. Journal of Clinical Microbiology, 2015, 53, 692-695.	3.9	47
33	Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiologica, 2011, 56, 431-437.	2.3	46
34	Clostridium difficile Toxinotyping. Methods in Molecular Biology, 2010, 646, 67-76.	0.9	45
35	A chimeric ribozyme in Clostridium difficile combines features of group I introns and insertion elements. Molecular Microbiology, 2002, 36, 1447-1459.	2.5	43
36	Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile. Journal of Clinical Microbiology, 2011, 49, 2230-2238.	3.9	43

#	Article	IF	CITATIONS
37	Variant forms of the binary toxin CDT locus and tcdC gene in Clostridium difficile strains. Journal of Medical Microbiology, 2007, 56, 329-335.	1.8	42
38	Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing. International Journal of Food Microbiology, 2016, 223, 57-62.	4.7	39
39	Sequence Similarity of Clostridium difficile Strains by Analysis of Conserved Genes and Genome Content Is Reflected by Their Ribotype Affiliation. PLoS ONE, 2014, 9, e86535.	2.5	39
40	High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiology, 2019, 78, 194-200.	4.2	38
41	Dissemination of <i>Clostridium difficile</i> spores between environment and households: Dog paws and shoes. Zoonoses and Public Health, 2018, 65, 669-674.	2.2	37
42	Different host factors are associated with patterns in bacterial and fungal gut microbiota in Slovenian healthy cohort. PLoS ONE, 2018, 13, e0209209.	2.5	35
43	Clostridium difficile ribotypes in humans and animals in Brazil. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 1062-1065.	1.6	34
44	Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Veterinary Research, 2016, 47, 41.	3.0	30
45	Highly Protein Repellent and Antiadhesive Polysaccharide Biomaterial Coating for Urinary Catheter Applications. ACS Biomaterials Science and Engineering, 2019, 5, 5825-5832.	5.2	29
46	Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil. Anaerobe, 2014, 28, 207-211.	2.1	28
47	Detection of binary-toxin genes (cdtA and cdtB) among Clostridium difficile strains isolated from patients with C. difficile-associated diarrhoea (CDAD) in Poland. Journal of Medical Microbiology, 2005, 54, 143-147.	1.8	27
48	High prevalence of nontoxigenic Clostridium difficile isolated from hospitalized and non-hospitalized individuals in rural Ghana. International Journal of Medical Microbiology, 2016, 306, 652-656.	3.6	27
49	The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs. Anaerobe, 2018, 49, 58-62.	2.1	26
50	Prevalence and Strain Characterization of Clostridioides (Clostridium) difficile in Representative Regions of Germany, Ghana, Tanzania and Indonesia – A Comparative Multi-Center Cross-Sectional Study. Frontiers in Microbiology, 2018, 9, 1843.	3.5	26
51	Carriage of Clostridium difficile in free-living South American coati (Nasua nasua) in Brazil. Anaerobe, 2014, 30, 99-101.	2.1	23
52	Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe, 2016, 42, 142-144.	2.1	23
53	Clinical epidemiology of Clostridium difficile infection among hospitalized patients with antibiotic-associated diarrhea in a university hospital of Brazil. Anaerobe, 2018, 54, 65-71.	2.1	22
54	Distinct Types of Gut Microbiota Dysbiosis in Hospitalized Gastroenterological Patients Are Disease Non-related and Characterized With the Predominance of Either Enterobacteriaceae or Enterococcus. Frontiers in Microbiology, 2020, 11, 120.	3.5	22

#	Article	IF	CITATIONS
55	Isopod gut microflora parameters as endpoints in toxicity studies. Environmental Toxicology and Chemistry, 2002, 21, 604-609.	4.3	21
56	Toward a True Bacteriotherapy for Clostridium difficile Infection. New England Journal of Medicine, 2015, 372, 1566-1568.	27.0	18
57	Interactions Between Clostridioides difficile and Fecal Microbiota in in Vitro Batch Model: Growth, Sporulation, and Microbiota Changes. Frontiers in Microbiology, 2018, 9, 1633.	3.5	17
58	Molecular epidemiology of Clostridioides (previously Clostridium) difficile isolates from a university hospital in Minas Gerais, Brazil. Anaerobe, 2019, 56, 34-39.	2.1	17
59	A MLST Clade 2 Clostridium difficile strain with a variant TcdB induces severe inflammatory and oxidative response associated with mucosal disruption. Anaerobe, 2016, 40, 76-84.	2.1	16
60	Low overlap between carbapenem resistant Pseudomonas aeruginosa genotypes isolated from hospitalized patients and wastewater treatment plants. PLoS ONE, 2017, 12, e0186736.	2.5	16
61	Ribotype Classification of Clostridioides difficile Isolates Is Not Predictive of the Amino Acid Sequence Diversity of the Toxin Virulence Factors TcdA and TcdB. Frontiers in Microbiology, 2020, 11, 1310.	3.5	15
62	Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Scientific Reports, 2020, 10, 8358.	3.3	15
63	Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes. Anaerobe, 2016, 39, 183-188.	2.1	14
64	A point-prevalence study on community and inpatient Clostridioides difficile infections (CDI): results from Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI), July to November 2018. Eurosurveillance, 2022, 27, .	7.0	14
65	Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Eurosurveillance, 2020, 25, .	7.0	13
66	Genomic Relatedness of Clostridium difficile strains from different toxinotypes and serogroups. Anaerobe, 2000, 6, 261-267.	2.1	12
67	Clostridium difficile toxinotype XI (A-B-) exhibits unique arrangement of PaLoc and its upstream region. Anaerobe, 2010, 16, 393-395.	2.1	12
68	Clostridium difficile in goats and sheep in Slovenia: Characterisation of strains and evidence of age-related shedding. Anaerobe, 2014, 28, 163-167.	2.1	12
69	Recombination Drives Evolution of the Clostridium difficile 16S-23S rRNA Intergenic Spacer Region. PLoS ONE, 2014, 9, e106545.	2.5	11
70	Identification of novel, cryptic Clostridioides species isolates from environmental samples collected from diverse geographical locations. Microbial Genomics, 2022, 8, .	2.0	11
71	Analysis of seed-associated bacteria and fungi on staple crops using the cultivation and metagenomic approaches. Folia Microbiologica, 2022, 67, 351-361.	2.3	10
72	Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Scientific Reports, 2017, 7, 16448.	3.3	9

#	Article	IF	Citations
73	Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiology Letters, 2000, 186, 307-312.	1.8	9
74	Clostridium (Clostridioides) difficile shedding by polar bears (Ursus maritimus) in the Canadian Arctic. Anaerobe, 2019, 57, 35-38.	2.1	8
75	Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microbial Genomics, 2020, 6, .	2.0	8
76	Isolation of Clostridioides difficile from different outdoor sites in the domestic environment. Anaerobe, 2020, 62, 102183.	2.1	7
77	Novel Siphoviridae Bacteriophages Infecting Bacteroides uniformis Contain Diversity Generating Retroelement. Microorganisms, 2021, 9, 892.	3.6	7
78	Clostridioides difficile positivity rate and PCR ribotype distribution on retail potatoes in 12 European countries, January to June 2018. Eurosurveillance, 2022, 27, .	7.0	7
79	Clostridioides difficile ribotype distribution in a large teaching hospital in Serbia. Gut Pathogens, 2020, 12, 26.	3.4	6
80	Possible contribution of shoes to Clostridioides difficile transmission within hospitals. Clinical Microbiology and Infection, 2021, 27, 797-799.	6.0	5
81	Clostridium difficile infection and gut microbiota. Seminars in Colon and Rectal Surgery, 2014, 25, 124-127.	0.3	3
82	High contamination rates of shoes of veterinarians, veterinary support staff and veterinary students with Clostridioides difficile spores. Transboundary and Emerging Diseases, 2021, , .	3.0	3
83	Clostridioides difficile: New global perspectives. Anaerobe, 2022, 74, 102557.	2.1	3
84	Latent brain infection with Moraxella osloensis as a possible cause of cerebral gliomatosis type 2: A case report. World Journal of Clinical Oncology, 2020, 11, 1064-1069.	2.3	2
85	Letter to Editor. Anaerobe, 2016, 42, 205.	2.1	1
86	Introduction to the special issue on Clostridium difficile and the history of the International Clostridium difficile Symposium (ICDS). Anaerobe, 2016, 37, 1-2.	2.1	1
87	Clostridioides (Clostridium) difficile – Interesting and difficult. Anaerobe, 2019, 60, 102124.	2.1	0
88	Anaerobes in the microbiome. Anaerobe, 2021, 68, 102362.	2.1	0
89	Comparison of Microbial Populations in Saliva and Feces from Healthy and Celiac Adolescents with Conventional and Molecular Approaches after Cultivation on Gluten-Containing Media: An Exploratory Study. Microorganisms, 2021, 9, 2375.	3.6	0