
Xingyuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8104438/publications.pdf Version: 2024-02-01

XINCVIIAN CHEN

#	Article	IF	CITATIONS
1	Guidelines for Publicly Archiving Terrestrial Model Data to Enhance Usability, Intercomparison, and Synthesis. Data Science Journal, 2022, 21, 3.	1.3	3
2	Process Interactions Can Change Process Ranking in a Coupled Complex System Under Process Model and Parametric Uncertainty. Water Resources Research, 2022, 58, .	4.2	3
3	Using Ensemble Data Assimilation to Estimate Transient Hydrologic Exchange Flow Under Highly Dynamic Flow Conditions. Water Resources Research, 2022, 58, .	4.2	10
4	From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE-supported research in water and energy security. Environmental Research Letters, 2022, 17, 043004.	5.2	12
5	Technical note: Using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrology and Earth System Sciences, 2022, 26, 1727-1743.	4.9	11
6	The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses. Hydrology and Earth System Sciences, 2022, 26, 2245-2276.	4.9	11
7	Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.	5.4	22
8	Estimating Watershed Subsurface Permeability From Stream Discharge Data Using Deep Neural Networks. Frontiers in Earth Science, 2021, 9, .	1.8	10
9	Impact of Vegetation Physiology and Phenology on Watershed Hydrology in a Semiarid Watershed in the Pacific Northwest in a Changing Climate. Water Resources Research, 2021, 57, e2020WR028394.	4.2	6
10	Coupling surface flow with high-performance subsurface reactive flow and transport code PFLOTRAN. Environmental Modelling and Software, 2021, 137, 104959.	4.5	15
11	Groundwater Regulates Interannual Variations in Evapotranspiration in a Riparian Semiarid Ecosystem. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033078.	3.3	6
12	Groundwater Inflows to the Columbia River Along the Hanford Reach and Associated Nitrate Concentrations. Frontiers in Water, 2021, 3, .	2.3	2
13	DART-PFLOTRAN: An ensemble-based data assimilation system for estimating subsurface flow and transport model parameters. Environmental Modelling and Software, 2021, 142, 105074.	4.5	6
14	A novel construct for scaling groundwater–river interactions based on machine-guided hydromorphic classification. Environmental Research Letters, 2021, 16, 104016.	5.2	1
15	Can Simple Machine Learning Tools Extend and Improve Temperature-Based Methods to Infer Streambed Flux?. Water (Switzerland), 2021, 13, 2837.	2.7	0
16	Explore Spatioâ€Temporal Learning of Large Sample Hydrology Using Graph Neural Networks. Water Resources Research, 2021, 57, e2021WR030394.	4.2	27
17	Identification of Characteristic Spatial Scales to Improve the Performance of Analytical Spectral Solutions to the Groundwater Flow Equation. Water Resources Research, 2021, 57, .	4.2	0
18	Representing Organic Matter Thermodynamics in Biogeochemical Reactions via Substrate-Explicit Modeling. Frontiers in Microbiology, 2020, 11, 531756.	3.5	27

XINGYUAN CHEN

#	Article	IF	CITATIONS
19	Temporal flow variations interact with spatial physical heterogeneity to impact solute transport in managed river corridors. Journal of Contaminant Hydrology, 2020, 235, 103713.	3.3	7
20	Effects of Irrigation on Water, Carbon, and Nitrogen Budgets in a Semiarid Watershed in the Pacific Northwest: A Modeling Study. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001953.	3.8	15
21	Uncertainties in Turbulent Statistics and Fluxes of CO 2 Associated With Density Effect Corrections. Geophysical Research Letters, 2020, 47, e2020GL088859.	4.0	3
22	River Dynamics Control Transit Time Distributions and Biogeochemical Reactions in a Damâ€Regulated River Corridor. Water Resources Research, 2020, 56, e2019WR026470.	4.2	12
23	High-Performance Simulation of Dynamic Hydrologic Exchange and Implications for Surrogate Flow and Reactive Transport Modeling in a Large River Corridor. Frontiers in Water, 2020, 2, .	2.3	2
24	Floodplain Inundation and Salinization From a Recently Restored Firstâ€Order Tidal Stream. Water Resources Research, 2020, 56, e2019WR026850.	4.2	15
25	Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. Journal of Contaminant Hydrology, 2020, 234, 103679.	3.3	29
26	Enlarged Nonclosure of Surface Energy Balance With Increasing Atmospheric Instabilities Linked to Changes in Coherent Structures. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032889.	3.3	6
27	Flexible and Modular Simultaneous Modeling of Flow and Reactive Transport in Rivers and Hyporheic Zones. Water Resources Research, 2020, 56, e2019WR026528.	4.2	21
28	Kilometer cale Hydrologic Exchange Flows in a Gravel Bed River Corridor and Their Implications to Solute Migration. Water Resources Research, 2020, 56, e2019WR025258.	4.2	19
29	Methane and nitrous oxide porewater concentrations and surface fluxes of a regulated river. Science of the Total Environment, 2020, 715, 136920.	8.0	20
30	Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications, 2020, 11, 1665.	12.8	158
31	Understanding Contaminant Migration Within a Dynamic River Corridor Through Field Experiments and Reactive Transport Modeling. Frontiers in Water, 2020, 2, .	2.3	2
32	A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0). Geoscientific Model Development, 2020, 13, 3553-3569.	3.6	14
33	Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed. Hydrology and Earth System Sciences, 2020, 24, 4971-4996.	4.9	1
34	Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise. Theoretical and Applied Climatology, 2019, 136, 1495-1511.	2.8	3
35	Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilationand Indicator Geostatistics With Levelâ€6et Transformation. Water Resources Research, 2019, 55, 2652-2671.	4.2	22
36	Using Bayesian Networks for Sensitivity Analysis of Complex Biogeochemical Models. Water Resources Research, 2019, 55, 3541-3555.	4.2	23

XINGYUAN CHEN

#	Article	IF	CITATIONS
37	Dam Operations and Subsurface Hydrogeology Control Dynamics of Hydrologic Exchange Flows in a Regulated River Reach. Water Resources Research, 2019, 55, 2593-2612.	4.2	39
38	Mechanistic links between underestimated CO ₂ fluxes and non-closure of the surface energy balance in a semi-arid sagebrush ecosystem. Environmental Research Letters, 2019, 14, 044016.	5.2	16
39	Groundwaterâ€River Water Exchange Enhances Growing Season Evapotranspiration and Carbon Uptake in a Semiarid Riparian Ecosystem. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 99-114.	3.0	21
40	Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. Science of the Total Environment, 2019, 657, 435-445.	8.0	19
41	Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach. Water Resources Research, 2018, 54, 2715-2730.	4.2	17
42	Drought Conditions Maximize the Impact of Highâ€Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone. Water Resources Research, 2018, 54, 7361-7382.	4.2	63
43	A geostatisticsâ€informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resources Research, 2017, 53, 4327-4343.	4.2	30
44	A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research, 2017, 53, 3476-3490.	4.2	41
45	A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6934-6949.	3.3	38
46	PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data. Computers and Geosciences, 2017, 99, 72-80.	4.2	21
47	Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process. Frontiers in Microbiology, 2017, 8, 1866.	3.5	40
48	Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CPÂv1.0). Geoscientific Model Development, 2017, 10, 4539-4562.	3.6	25
49	Soil respiration across aÂpermafrost transition zone: spatial structure and environmental correlates. Biogeosciences, 2017, 14, 4341-4354.	3.3	7
50	A new and inexpensive non-bit-for-bit solution reproducibility test based on time stepÂconvergence (TSC1.0). Geoscientific Model Development, 2017, 10, 537-552.	3.6	9
51	River stage influences on uranium transport in a hydrologically dynamic groundwaterâ€surface water transition zone. Water Resources Research, 2016, 52, 1568-1590.	4.2	42
52	Fourâ€dimensional electrical conductivity monitoring of stageâ€driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints. Water Resources Research, 2015, 51, 6177-6196.	4.2	33
53	An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods. Ground Water, 2015, 53, 38-56.	1.3	62
54	Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area. Water Resources Research, 2013, 49, 7064-7076.	4.2	37

XINGYUAN CHEN

#	Article	IF	CITATIONS
55	A strategy for improved computational efficiency of the method of anchored distributions. Water Resources Research, 2013, 49, 3257-3275.	4.2	5
56	A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements. Tree Physiology, 2012, 32, 1458-1470.	3.1	11
57	Threeâ€dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using tracer test data. Water Resources Research, 2012, 48, .	4.2	40
58	A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resources Research, 2010, 46, .	4.2	70
59	Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resources Research, 2010, 46, .	4.2	163
60	Observations and stochastic modeling of soil moisture control on evapotranspiration in a Californian oak savanna. Water Resources Research, 2008, 44, .	4.2	44