Shaobin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8104209/publications.pdf

Version: 2024-02-01

SHAORIN ZHONC

#	Article	IF	CITATIONS
1	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	7.1	640
2	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	4.7	595
3	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	3.5	232
4	The 3ADON Population of <i>Fusarium graminearum</i> Found in North Dakota Is More Aggressive and Produces a Higher Level of DON than the Prevalent 15ADON Population in Spring Wheat. Phytopathology, 2010, 100, 1007-1014.	2.2	152
5	Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chemistry, 2019, 291, 199-206.	8.2	123
6	Virulence and Molecular Diversity in Cochliobolus sativus. Phytopathology, 2001, 91, 469-476.	2.2	91
7	Evolutionary genomics of ecological specialization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11719-11724.	7.1	86
8	Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theoretical and Applied Genetics, 2011, 123, 1107-1119.	3.6	65
9	A Molecular Genetic Map and Electrophoretic Karyotype of the Plant Pathogenic Fungus Cochliobolus sativus. Molecular Plant-Microbe Interactions, 2002, 15, 481-492.	2.6	64
10	Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Theoretical and Applied Genetics, 2018, 131, 1939-1951.	3.6	57
11	Identification and molecular mapping of quantitative trait loci for Fusarium head blight resistance in emmer and durum wheat using a single nucleotide polymorphism-based linkage map. Molecular Breeding, 2014, 34, 1677-1687.	2.1	55
12	Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food and Function, 2018, 9, 2872-2882.	4.6	51
13	Sfpâ€ŧype 4′â€phosphopantetheinyl transferase is required for lysine synthesis, tolerance to oxidative stress and virulence in the plant pathogenic fungus <i>Cochliobolus sativus</i> . Molecular Plant Pathology, 2012, 13, 375-387.	4.2	49
14	Enhancement of antifungal and mycotoxin inhibitory activities of food-grade thyme oil nanoemulsions with natural emulsifiers. Food Control, 2019, 106, 106709.	5.5	48
15	Development and Characterization of Expressed Sequence Tag-Derived Microsatellite Markers for the Wheat Stem Rust Fungus <i>Puccinia graminis</i> f. sp. <i>tritici</i> . Phytopathology, 2009, 99, 282-289.	2.2	45
16	Tetraploid Tunisian Wheat Germplasm as a New Source of Fusarium Head Blight Resistance. Crop Science, 2012, 52, 136-145.	1.8	43
17	Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense. Fungal Genetics and Biology, 2014, 65, 1-13.	2.1	40
18	The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana. PLoS ONE, 2015, 10, e0128291.	2.5	35

#	Article	IF	CITATIONS
19	Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food and Function, 2019, 10, 2817-2827.	4.6	34
20	Identification and mapping of Sr46 from Aegilops tauschii accession Clae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theoretical and Applied Genetics, 2015, 128, 431-443.	3.6	33
21	Sources and Genetics of Spot Blotch Resistance to a New Pathotype of <i>Cochliobolus sativus</i> in the USDA National Small Grains Collection. Plant Disease, 2016, 100, 1988-1993.	1.4	33
22	Molecular Mapping of the Leaf Rust Resistance Gene Rph6 in Barley and Its Linkage Relationships with Rph5 and Rph7. Phytopathology, 2003, 93, 604-609.	2.2	32
23	Molecular Mapping and Marker-Assisted Selection of Genes for Septoria Speckled Leaf Blotch Resistance in Barley. Phytopathology, 2006, 96, 993-999.	2.2	32
24	Molecular Mapping of Fusarium Head Blight Resistance in the Spring Wheat Line ND2710. Phytopathology, 2018, 108, 972-979.	2.2	32
25	Effect of chitosan coatings on physical stability, antifungal and mycotoxin inhibitory activities of lecithin stabilized cinnamon oil-in-water emulsions. LWT - Food Science and Technology, 2019, 106, 98-104.	5.2	32
26	Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chemistry, 2020, 312, 126120.	8.2	29
27	A lossâ€ofâ€function of the dirigent gene <i>TaDIRâ€B1</i> improves resistance to Fusarium crown rot in wheat. Plant Biotechnology Journal, 2021, 19, 866-868.	8.3	28
28	Population structure, genetic diversity, and sexual state of the rice brown spot pathogen <i>Bipolaris oryzae</i> from three Asian countries. Plant Pathology, 2018, 67, 181-192.	2.4	26
29	RNAâ€mediated gene silencing in the cereal fungal pathogen <i>Cochliobolus sativus</i> . Molecular Plant Pathology, 2011, 12, 289-298.	4.2	25
30	Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant Cell Reports, 2012, 31, 2047-2055.	5.6	25
31	Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biology, 2016, 120, 948-960.	2.5	25
32	RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta. PLoS ONE, 2016, 11, e0163803.	2.5	25
33	Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat. Theoretical and Applied Genetics, 2016, 129, 31-43.	3.6	24
34	Genetic Mapping and Prediction Analysis of FHB Resistance in a Hard Red Spring Wheat Breeding Population. Frontiers in Plant Science, 2019, 10, 1007.	3.6	24
35	PERMANENT GENETIC RESOURCES: Development of microsatellite markers for the guava rust fungus, <i>Puccinia psidii</i> . Molecular Ecology Resources, 2008, 8, 348-350.	4.8	23
36	Identification and application of a unique genetic locus in diagnosis of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4. Canadian Journal of Plant Pathology, 2013, 35, 482-493.	1.4	21

#	Article	IF	CITATIONS
37	The gene conferring susceptibility to spot blotch caused by Cochliobolus sativus is located at the Mla locus in barley cultivar Bowman. Theoretical and Applied Genetics, 2018, 131, 1531-1539.	3.6	21
38	Transcription, Translation, and the Evolution of Specialists and Generalists. Molecular Biology and Evolution, 2009, 26, 2661-2678.	8.9	20
39	Identification and characterization of Pestalotiopsis spp. causing twig blight disease of bayberry (Myrica rubra Sieb. & Zucc) in China. European Journal of Plant Pathology, 2013, 137, 451-461.	1.7	20
40	Genetic Diversity and Resistance to Fusarium Head Blight in Synthetic Hexaploid Wheat Derived From Aegilops tauschii and Diverse Triticum turgidum Subspecies. Frontiers in Plant Science, 2018, 9, 1829.	3.6	20
41	Molecular characterization of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> race 1 and 4 isolates from Taiwan and Southern China. Canadian Journal of Plant Pathology, 2011, 33, 168-178.	1.4	19
42	Genetic and molecular characterization of mating type genes in <i>Cochliobolus sativus</i> . Mycologia, 2001, 93, 852-863.	1.9	18
43	â€ ⁻ Prosper': A High‥ielding Hard Red Spring Wheat Cultivar Adapted to the North Central Plains of the USA. Journal of Plant Registrations, 2013, 7, 75-80.	0.5	18
44	Genome-wide association mapping of spot blotch resistance to three different pathotypes of Cochliobolus sativus in the USDA barley core collection. Molecular Breeding, 2017, 37, 1.	2.1	17
45	Characterization of Puccinia psidii isolates in Hawaii using microsatellite DNA markers. Journal of General Plant Pathology, 2011, 77, 178-181.	1.0	15
46	Function and evolution of allelic variations of <i>Sr13</i> conferring resistance to stem rust in tetraploid wheat (<i>Triticum turgidum</i> L.). Plant Journal, 2021, 106, 1674-1691.	5.7	15
47	Molecular and Cytogenetic Characterization of Wheat Introgression Lines Carrying the Stem Rust Resistance Gene Sr39. Crop Science, 2010, 50, 1393-1400.	1.8	14
48	AFLP, Pathogenicity, and VCG Analyses of <i>Fusarium oxysporum</i> and <i>Fusarium pseudocircinatum</i> from <i>Acacia koa</i> . Plant Disease, 2012, 96, 1111-1117.	1.4	13
49	The regulatory gene VosA affects conidiogenesis and is involved in virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biology, 2015, 119, 884-900.	2.5	13
50	<i>Brachypodium distachyon</i> – <i>Cochliobolus sativus</i> Pathosystem is a New Model for Studying Plant–Fungal Interactions in Cereal Crops. Phytopathology, 2015, 105, 482-489.	2.2	13
51	Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens. Food Control, 2018, 92, 276-285.	5.5	13
52	Genetic and Molecular Characterization of Mating Type Genes in Cochliobolus sativus. Mycologia, 2001, 93, 852.	1.9	12
53	Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus. Mycological Research, 2007, 111, 78-86.	2.5	12
54	Characterization of <i>Thinopyrum</i> Species for Wheat Stem Rust Resistance and Ploidy Level. Crop Science, 2014, 54, 2663-2672.	1.8	12

#	Article	IF	CITATIONS
55	Fine mapping of a dominant gene conferring resistance to spot blotch caused by a new pathotype of Bipolaris sorokiniana in barley. Theoretical and Applied Genetics, 2019, 132, 41-51.	3.6	11
56	Molecular Mapping of Loci Conferring Susceptibility to Spot Blotch and Resistance to Powdery Mildew in Barley Using the Sequencing-Based Genotyping Approach. Phytopathology, 2020, 110, 440-446.	2.2	11
57	Analysis of Expressed Sequence Tags from the Fungal Banana Pathogen Mycosphaerella fijiensis. The Open Mycology Journal, 2008, 2, 61-73.	0.8	11
58	A conserved hypothetical gene is required but not sufficient for Ptr ToxC production in Pyrenophora tritici-repentis. Molecular Plant-Microbe Interactions, 2022, , .	2.6	11
59	Reactions of hard red spring wheat to common root rot under field conditions of Northern United States of America. Euphytica, 2009, 167, 165-172.	1.2	9
60	Genetic analysis and molecular mapping of crown rust resistance in common wheat. Theoretical and Applied Genetics, 2014, 127, 609-619.	3.6	9
61	Effects of D enome Chromosomes and Their A/Bâ€Genome Homoeologs on Fusarium Head Blight Resistance in Durum Wheat. Crop Science, 2016, 56, 1049-1058.	1.8	8
62	Identification of Fungal Species Associated with Crown and Root Rots of Wheat and Evaluation of Plant Reactions to the Pathogens in North Dakota. Plant Disease, 2021, 105, 3564-3572.	1.4	8
63	A genome-wide genetic linkage map and reference quality genome sequence for a new race in the wheat pathogen Pyrenophora tritici-repentis. Fungal Genetics and Biology, 2021, 152, 103571.	2.1	8
64	Construction of genetic linkage maps and QTL mapping for X-disease resistance in tetraploid chokecherry (Prunus virginiana L.) using SSR and AFLP markers. Molecular Breeding, 2014, 34, 143-157.	2.1	7
65	Genetic <scp>S</scp> tructure of <i><scp>C</scp>ochliobolus sativus </i> <scp>P</scp> opulations <scp>S</scp> ampled from <scp>R</scp> oots and <scp>L</scp> eaves of <scp>B</scp> arley and <scp>W</scp> heat in <scp>N</scp> orth <scp>D</scp> akota. Journal of Phytopathology, 2012, 160, 637-646.	1.0	6
66	Construction of Hairpin RNA-Expressing Vectors for RNA-Mediated Gene Silencing in Fungi. Methods in Molecular Biology, 2012, 835, 623-633.	0.9	6
67	First Report of Alternaria Leaf Spot Caused by <i>Alternaria tenuissima</i> on Sugar Beet (<i>Beta) Tj ETQq1 1 (</i>).784314 1.4	rgBT /Overlo
68	Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat. Theoretical and Applied Genetics, 2015, 128, 2367-2374.	3.6	5
69	First Report of <i>Fusarium equiseti</i> Causing Seedling Death on Sugar Beet in Minnesota, U.S.A Plant Disease, 2021, 105, 2017.	1.4	5
70	†Velva' Spring Wheat: An Adapted Cultivar to North-Central Plains of the United States with High Agronomic and Quality Performance. Journal of Plant Registrations, 2014, 8, 32-37.	0.5	5
71	â€~Elginâ€ND' Spring Wheat: A Newly Adapted Cultivar to the Northâ€Central Plains of the United States with High Agronomic and Quality Performance. Journal of Plant Registrations, 2016, 10, 130-134.	0.5	4
72	Prevalence of inversion positive and inversion negative mating type (MAT) alleles andMATheterokaryons inSclerotinia sclerotiorumin the United States. Botany, 2015, 93, 497-505.	1.0	3

#	Article	IF	CITATIONS
73	Molecular Mapping of Quantitative Trait Loci for Fusarium Head Blight Resistance in the Brazilian Spring Wheat Cultivar 〜Surpresaâ€: Frontiers in Plant Science, 2021, 12, 778472.	3.6	3
74	Genome Sequence Resources for the Maize Pathogen <i>Fusarium temperatum</i> Isolated in Poland. Molecular Plant-Microbe Interactions, 2021, 34, 214-217.	2.6	2
75	Genomic compatibility and inheritance of hexaploidâ€derived Fusarium head blight resistance genes in durum wheat. Plant Genome, 2022, , e20183.	2.8	1