Martin Engelhard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8101279/publications.pdf

Version: 2024-02-01

76326 88630 5,278 94 40 citations h-index papers

g-index 100 100 100 3668 docs citations times ranked citing authors all docs

70

#	Article	IF	CITATIONS
1	Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature, 2002, 419, 484-487.	27.8	380
2	A new synthetic route to tert-butyloxycarbonylaminoacyl-4-(oxymethyl)phenylacetamidomethyl-resin, an improved support for solid-phase peptide synthesis. Journal of Organic Chemistry, 1978, 43, 2845-2852.	3.2	350
3	Bioenergetics of the Archaea. Microbiology and Molecular Biology Reviews, 1999, 63, 570-620.	6.6	248
4	Proteorhodopsin is a Light-driven Proton Pump with Variable Vectoriality. Journal of Molecular Biology, 2002, 321, 821-838.	4.2	225
5	Secondary Structure, Dynamics, and Topology of a Seven-Helix Receptor in Native Membranes, Studied by Solid-State NMR Spectroscopy. Angewandte Chemie - International Edition, 2007, 46, 459-462.	13.8	184
6	The Photophobic Receptor from Natronobacterium pharaonis: Temperature and pH Dependencies of the Photocycle of Sensory Rhodopsin II. Biophysical Journal, 1998, 75, 999-1009.	0.5	172
7	Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature, 2006, 440, 115-119.	27.8	169
8	Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2000, 301, 881-891.	4.2	155
9	Functional Cell-free Synthesis of a Seven Helix Membrane Protein: In situ Insertion of Bacteriorhodopsin into Liposomes. Journal of Molecular Biology, 2007, 371, 639-648.	4.2	148
10	Transient Kinetic Studies on the Interaction of Ras and the Ras-Binding Domain of c-Raf-1 Reveal Rapid Equilibration of the Complexâ€. Biochemistry, 1998, 37, 14292-14299.	2.5	124
11	Purification of histidine tagged bacteriorhodopsin,pharaonishalorhodopsin andpharaonissensory rhodopsin II functionally expressed in Escherichia coli. FEBS Letters, 1999, 442, 198-202.	2.8	123
12	Blue Halorhodopsin from Natronobacterium pharaonis: Wavelength Regulation by Anions. Biochemistry, 1994, 33, 6387-6393.	2.5	110
13	The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Letters, 2004, 564, 219-224.	2.8	103
14	Of ion pumps, sensors and channels â€" Perspectives on microbial rhodopsins between science and history. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 533-545.	1.0	92
15	Structural Characterization of Polyglutamine Fibrils by Solid-State NMR Spectroscopy. Journal of Molecular Biology, 2011, 412, 121-136.	4.2	88
16	Synthesis of protein–nucleic acid conjugates by expressed protein ligation. Chemical Communications, 2003, , 822-823.	4.1	81
17	Temperature and Halide Dependence of the Photocycle of Halorhodopsin from Natronobacterium pharaonis. Biophysical Journal, 2001, 81, 1600-1612.	0.5	78
18	Microbial Rhodopsins: Scaffolds for Ion Pumps, Channels, and Sensors. , 2008, 45, 73-122.		78

#	Article	IF	CITATIONS
19	Biochemical and photochemical properties of the photophobic receptors from Halobacterium halobium and Natronobacterium pharaonis. FEBS Journal, 1992, 206, 359-366.	0.2	77
20	First Steps of Retinal Photoisomerization in Proteorhodopsin. Biophysical Journal, 2006, 91, 255-262.	0.5	74
21	Structural Analysis of a HAMP Domain. Journal of Biological Chemistry, 2005, 280, 38767-38775.	3.4	66
22	Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochemical and Photobiological Sciences, 2004, 3, 543.	2.9	64
23	Green tea extracts interfere with the stressâ€protective activity of PrP ^C and the formation of PrP ^{Sc} . Journal of Neurochemistry, 2008, 107, 218-229.	3.9	64
24	Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chemical Reviews, 2018, 118, 10629-10645.	47.7	64
25	IDENTIFICATION OF THE PROTON ACCEPTOR OF SCHIFF BASE DEPROTONATION IN BACTERIORHODOPSIN: A FOURIER-TRANSFORM-INFRARED STUDY OF THE MUTANT ASP85 ↠GLU IN ITS NATURAL LIPID ENVIRONMENT. Photochemistry and Photobiology, 1992, 56, 1073-1083.	2.5	62
26	Static and Time-Resolved Step-Scan Fourier Transform Infrared Investigations of the Photoreaction of Halorhodopsin from Natronobacterium Pharaonis: Consequences for Models of the Anion Translocation Mechanism. Biophysical Journal, 2001, 81, 394-406.	0.5	61
27	Time-Resolved FTIR Studies of Sensory Rhodopsin II (NpSRII) from Natronobacterium pharaonis: Implications for Proton Transport and Receptor Activation. Biophysical Journal, 2003, 84, 1208-1217.	0.5	59
28	Probing the Sensory Rhodopsin II Binding Domain of its Cognate Transducer by Calorimetry and Electrophysiology. Journal of Molecular Biology, 2003, 330, 1203-1213.	4.2	57
29	Total chemical synthesis of a functional interacting protein pair: The protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5075-5080.	7.1	57
30	Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry, 1993, 32, 12894-12900.	2.5	56
31	Electron Transfer Proteins from the Haloalkaliphilic ArchaeonNatronobacterium pharaonis:ÂPossible Components of the Respiratory Chain Include Cytochromebcand a Terminal Oxidase Cytochromeba3â€. Biochemistry, 1997, 36, 4471-4479.	2.5	56
32	Semisynthetic Murine Prion Protein Equipped with a GPI Anchor Mimic Incorporates into Cellular Membranes. Chemistry and Biology, 2007, 14, 994-1006.	6.0	56
33	Chromophoreâ^'Anion Interactions in Halorhodopsin fromNatronobacterium pharaonisProbed by Time-Resolved Resonance Raman Spectroscopyâ€. Biochemistry, 1997, 36, 11012-11020.	2.5	55
34	Voltage- and pH-Dependent Changes in Vectoriality of Photocurrents Mediated by Wild-type and Mutant Proteorhodopsins upon Expression in Xenopus Oocytes. Journal of Molecular Biology, 2009, 393, 320-341.	4.2	49
35	Complex Formation and Light Activation in Membrane-Embedded Sensory Rhodopsin II as Seen by Solid-State NMR Spectroscopy. Structure, 2010, 18, 293-300.	3.3	49
36	Molecular Impact of the Membrane Potential on the Regulatory Mechanism of Proton Transfer in Sensory Rhodopsin II. Journal of the American Chemical Society, 2010, 132, 10808-10815.	13.7	48

#	Article	IF	Citations
37	Proline residues undergo structural changes during proton pumping in bacteriorhodopsin. FEBS Letters, 1990, 261, 449-454.	2.8	47
38	Effects of Solubilization on the Structure and Function of the Sensory Rhodopsin II/Transducer Complex. Journal of Molecular Biology, 2006, 356, 1207-1221.	4.2	44
39	Resonance Raman spectroscopy of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Letters, 2000, 472, 263-266.	2.8	43
40	Direct Readout of Protein-Protein Interactions by Mass Spectrometry from Protein-DNA Microarrays. Angewandte Chemie - International Edition, 2005, 44, 7635-7639.	13.8	43
41	Salt-driven Equilibrium between Two Conformations in the HAMP Domain from Natronomonas pharaonis. Journal of Biological Chemistry, 2008, 283, 28691-28701.	3.4	43
42	Anion Uptake in Halorhodopsin fromNatromonas pharaonisStudied by FTIR Spectroscopy:Â Consequences for the Anion Transport Mechanismâ€. Biochemistry, 2006, 45, 11578-11588.	2.5	40
43	Cytochrome ba3 from Natronobacterium pharaonis. An Archaeal Four-Subunit Cytochrome-c-Type Oxidase. FEBS Journal, 1997, 250, 332-341.	0.2	39
44	Time-Resolved Absorption and Photothermal Measurements with Recombinant Sensory Rhodopsin II from Natronobacterium pharaonis. Biophysical Journal, 1999, 77, 3277-3286.	0.5	38
45	Combining Chemical and Biological Techniques to Produce Modified Proteins. ChemBioChem, 2002, 3, 399.	2.6	38
46	Photostability of 4,4′â€Dihydroxythioindigo, a Mimetic of Indigo. Angewandte Chemie - International Edition, 2014, 53, 591-594.	13.8	38
47	Rapid prediction of multi-dimensional NMR data sets. Journal of Biomolecular NMR, 2012, 54, 377-387.	2.8	35
48	Translational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dualâ€Focus FCS. ChemBioChem, 2009, 10, 1823-1829.	2.6	33
49	Native chemical ligation of hydrophobic peptides in organic solvents. Journal of Peptide Science, 2010, 16, 558-562.	1.4	32
50	Active State of Sensory Rhodopsin II: Structural Determinants for Signal Transfer and Proton Pumping. Journal of Molecular Biology, 2011, 412, 591-600.	4.2	31
51	Aspartate 75 Mutation in Sensory Rhodopsin II from Natronobacterium pharaonis Does Not Influence the Production of the K-Like Intermediate, but Strongly Affects Its Relaxation Pathway. Biophysical Journal, 2000, 78, 2581-2589.	0.5	30
52	Enthalpyâ^'Entropy Compensation in a Photocycle:Â The K-to-L Transition in Sensory Rhodopsin II fromNatronobacterium pharaonis. Journal of the American Chemical Society, 2001, 123, 1766-1767.	13.7	30
53	Transducer Binding Establishes Localized Interactions to Tune Sensory Rhodopsin II. Structure, 2008, 16, 1206-1213.	3.3	30
54	Transmembrane signal transduction in archaeal phototaxis: The sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. European Journal of Cell Biology, 2011, 90, 731-739.	3.6	30

#	Article	IF	Citations
55	Equilibrium Studies on the Refolding and Reactivation of Rabbit-Muscle Aldolase after Acid Dissociation. FEBS Journal, 1976, 67, 447-453.	0.2	28
56	Interpretation of Amide I Difference Bands Observed during Protein Reactions Using Site-Directed Isotopically Labeled Bacteriorhodopsin as a Model System. Journal of Physical Chemistry A, 2002, 106, 3553-3559.	2.5	27
57	Probing the Proton Channel and the Retinal Binding Site of Natronobacterium pharaonis Sensory Rhodopsin II. Biophysical Journal, 2002, 82, 2156-2164.	0.5	25
58	Lightâ€induced switching of HAMP domain conformation and dynamics revealed by timeâ€resolved EPR spectroscopy. FEBS Letters, 2014, 588, 3970-3976.	2.8	24
59	Analysis of Light-Induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopyâ€. Photochemistry and Photobiology, 2007, 83, 263-272.	2.5	23
60	C-Terminal Fluorescence Labeling of Proteins for Interaction Studies on the Single-Molecule Level. ChemBioChem, 2006, 7, 891-895.	2.6	22
61	A sensitive fluorescence monitor for the detection of activated Ras: total chemical synthesis of site-specifically labeled Ras binding domain of c-Raf1 immobilized on a surface. Chemistry and Biology, 2001, 8, 243-252.	6.0	21
62	Native chemical ligation in dimethylformamide can be performed chemoselectively without racemization. Journal of Peptide Science, 2012, 18, 312-316.	1.4	21
63	True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nature Structural and Molecular Biology, 2022, 29, 440-450.	8.2	21
64	Synthesis of new conformationally rigid paramagnetic \hat{l}_{\pm} -amino acids. Tetrahedron Letters, 2003, 44, 9213-9217.	1.4	20
65	Protein immobilization on liposomes and lipidâ€coated nanoparticles by protein <i>trans</i> \$\frac{1}{2}\$\$ a \in \frac{1}{2}\$\$ a \in \frac{1}{2}\$\$ formula of Peptide Science, 2010, 16, 582-588.	1.4	20
66	Sensory Rhodopsin I and Sensory Rhodopsin <scp>II</scp> Form Trimers of Dimers in Complex with their Cognate Transducers. Photochemistry and Photobiology, 2017, 93, 796-804.	2.5	20
67	Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS ONE, 2018, 13, e0197659.	2.5	20
68	Thermodynamics of the Early Steps in the Photocycle of Natronobacterium pharaonis Halorhodopsin. Influence of Medium and of Anion Substitutionâ€Â¶. Photochemistry and Photobiology, 2001, 74, 495.	2.5	19
69	Functional expression of His-tagged sensory rhodopsin I inEscherichia coli. FEBS Letters, 2000, 466, 67-69.	2.8	18
70	Primary Photoinduced Protein Response in Bacteriorhodopsin and Sensory Rhodopsin II. Journal of the American Chemical Society, 2009, 131, 14868-14878.	13.7	18
71	Time-resolved resonance Raman spectroscopy of sensory rhodopsin II in the micro- and millisecond time range using gated cw excitation. Journal of Raman Spectroscopy, 2006, 37, 436-441.	2.5	17
72	Consequences of Counterion Mutation in Sensory Rhodopsin II of Natronobacterium pharaonis for Photoreaction and Receptor Activation: An FTIR Study. Biochemistry, 2004, 43, 995-1002.	2.5	16

#	Article	IF	CITATIONS
73	Thetrans–cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: Chromophore and protein dynamics. Biopolymers, 2006, 82, 358-362.	2.4	15
74	Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Computational Biology, 2015, 11, e1004561.	3.2	15
75	Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes. Journal of Physical Chemistry B, 2016, 120, 4383-4387.	2.6	15
76	The α-Helical Structure of Prodomains Promotes Translocation of Intrinsically Disordered Neuropeptide Hormones into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2013, 288, 13961-13973.	3.4	14
77	Molecular model of a sensor of two-component signaling system. Scientific Reports, 2021, 11, 10774.	3.3	14
78	The Signal Transfer from the Receptor NpSRII to the Transducer NpHtrII IsÂNot Hampered by the D75N Mutation. Biophysical Journal, 2011, 100, 2275-2282.	0.5	13
79	Dimerization of the cellular prion protein inhibits propagation of scrapie prions. Journal of Biological Chemistry, 2018, 293, 8020-8031.	3.4	13
80	Electric-Field Dependent Decays of Two Spectroscopically Different M-States of Photosensory Rhodopsin II from Natronobacterium pharaonis. Biophysical Journal, 2003, 84, 3864-3873.	0.5	12
81	Synthesis of a GPI anchor module suitable for protein postâ€translational modification. Biopolymers, 2010, 94, 457-464.	2.4	12
82	Total chemical synthesis of a membrane protein domain analogue containing two transmembrane helices: functional reconstitution of the semisynthetic sensory rhodopsin/transducer complex. Journal of Peptide Science, 2014, 20, 137-144.	1.4	12
83	Expression of the halobacterial transducer protein Htrll fromNatronomonas pharaonisinEscherichia coli. FEBS Letters, 2007, 581, 1487-1494.	2.8	11
84	Clustering and Dynamics of Phototransducer Signaling Domains Revealed by Site-Directed Spin Labeling Electron Paramagnetic Resonance on SRII/Htrll in Membranes and Nanodiscs. Biochemistry, 2015, 54, 349-362.	2.5	11
85	Quest for the chemical synthesis of proteins. Journal of Peptide Science, 2016, 22, 246-251.	1.4	9
86	Time-resolved methods in Biophysics. 1. A novel pump and probe surface-enhanced resonance Raman approach for studying biological photoreceptors. Photochemical and Photobiological Sciences, 2006, 5, 1103.	2.9	7
87	Functional Expression of the Signaling Complex Sensory Rhodopsin II/Transducer II from <i>Halobacterium salinarum</i> in <i>Escherichia coli</i> ^{â€} . Photochemistry and Photobiology, 2009, 85, 521-528.	2.5	7
88	Single-Molecule Force Spectroscopy Measures Structural Changes Induced by Light Activation and Transducer Binding in Sensory Rhodopsin II. Journal of Molecular Biology, 2009, 394, 383-390.	4.2	6
89	Primary Reaction of Sensory Rhodopsin II Mutant D75N and the Influence of Azide. Biochemistry, 2009, 48, 9677-9683.	2.5	5
90	Cell-free synthesis of the Ras-binding domain of c-Raf-1: binding studies to fluorescently labelled H-Ras. FEBS Letters, 1999, 452, 375-378.	2.8	3

#	Article	IF	CITATIONS
91	Signal relay from sensory rhodopsin I to the cognate transducer Htrl: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Biophysical Chemistry, 2010, 150, 23-28.	2.8	3
92	Chemical Biology of Prion Protein: Tools to Bridge the In Vitro/Vivo Interface. Topics in Current Chemistry, 2011, 305, 199-223.	4.0	3
93	Cover Picture: Secondary Structure, Dynamics, and Topology of a Seven-Helix Receptor in Native Membranes, Studied by Solid-State NMR Spectroscopy (Angew. Chem. Int. Ed. 3/2007). Angewandte Chemie - International Edition, 2007, 46, 309-309.	13.8	1
94	Thermodynamics of the Early Steps in the Photocycle of Natronobacterium pharaonis Halorhodopsin. Influence of Medium and of Anion Substitutionâ€Â¶. Photochemistry and Photobiology, 2001, 74, 495-503.	2.5	1