Yehuda Gérard Assaraf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resistance Updates, 2016, 27, 14-29.	14.4	511
2	Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates, 2018, 41, 1-25.	14.4	420
3	Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resistance Updates, 2011, 14, 150-163.	14.4	415
4	Molecular basis of bortezomib resistance: proteasome subunit β5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood, 2008, 112, 2489-2499.	1.4	406
5	Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resistance Updates, 2012, 15, 183-210.	14.4	351
6	Lysosomes as mediators of drug resistance in cancer. Drug Resistance Updates, 2016, 24, 23-33.	14.4	330
7	The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates, 2019, 46, 100645.	14.4	324
8	Molecular basis of antifolate resistance. Cancer and Metastasis Reviews, 2007, 26, 153-181.	5.9	304
9	The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resistance Updates, 2014, 17, 89-95.	14.4	301
10	Lysosomal Sequestration of Sunitinib: A Novel Mechanism of Drug Resistance. Clinical Cancer Research, 2011, 17, 7337-7346.	7.0	275
11	Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resistance Updates, 2017, 31, 15-30.	14.4	242
12	Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resistance Updates, 2015, 23, 69-78.	14.4	202
13	The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates, 2006, 9, 227-246.	14.4	186
14	Rationally designed nanovehicles to overcome cancer chemoresistance. Advanced Drug Delivery Reviews, 2013, 65, 1716-1730.	13.7	185
15	Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates, 2020, 48, 100663.	14.4	180
16	Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget, 2015, 6, 1143-1156.	1.8	171
17	Competition of Hydrophobic Peptides, Cytotoxic Drugs, and Chemosensitizers on a Common P-glycoprotein Pharmacophore as Revealed by Its ATPase Activity. Journal of Biological Chemistry, 1996, 271, 3163-3171.	3.4	158
18	The Role of Passive Transbilayer Drug Movement in Multidrug Resistance and Its Modulation. Journal of Biological Chemistry, 1996, 271, 12897-12902.	3.4	153

#	Article	IF	CITATIONS
19	Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resistance Updates, 2015, 18, 18-35.	14.4	153
20	Chemical molecularâ€based approach to overcome multidrug resistance in cancer by targeting Pâ€glycoprotein (Pâ€gp). Medicinal Research Reviews, 2021, 41, 525-555.	10.5	150
21	Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. FEBS Journal, 1999, 259, 18-24.	0.2	149
22	Potentiation of Anticancer-Drug Cytotoxicity by Multidrug-Resistance Chemosensitizers Involves Alterationsin Membrane Fluidity Leading to Increased Membrane Permeability. FEBS Journal, 1995, 228, 1020-1029.	0.2	148
23	Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resistance Updates, 2016, 28, 65-81.	14.4	147
24	Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resistance Updates, 2020, 49, 100670.	14.4	146
25	A Structurally Altered Human Reduced Folate Carrier with Increased Folic Acid Transport Mediates a Novel Mechanism of Antifolate Resistance. Journal of Biological Chemistry, 1998, 273, 30189-30198.	3.4	137
26	Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resistance Updates, 2019, 46, 100644.	14.4	133
27	Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resistance Updates, 2016, 24, 34-54.	14.4	124
28	Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget, 2017, 8, 45117-45132.	1.8	124
29	Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resistance Updates, 2021, 54, 100742.	14.4	121
30	Arabinogalactanâ^'Folic Acidâ^'Drug Conjugate for Targeted Delivery and Target-Activated Release of Anticancer Drugs to Folate Receptor-Overexpressing Cells. Biomacromolecules, 2010, 11, 294-303.	5.4	120
31	Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 119-126.	3.3	118
32	β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: Stability, target-activated release and cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 298-305.	4.3	118
33	The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resistance Updates, 2020, 53, 100728.	14.4	118
34	Folate Deprivation Results in the Loss of Breast Cancer Resistance Protein (BCRP/ABCG2) Expression. Journal of Biological Chemistry, 2004, 279, 25527-25534.	3.4	117
35	Beta-casein Nanoparticles as an Oral Delivery System for Chemotherapeutic Drugs: Impact of Drug Structure and Properties on Co-assembly. Pharmaceutical Research, 2010, 27, 2175-2186.	3.5	111
36	Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resistance Updates, 2017, 32, 23-46.	14.4	109

#	Article	IF	CITATIONS
37	Loss of folylpoly-?-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. International Journal of Cancer, 2003, 103, 587-599.	5.1	108
38	Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resistance Updates, 2020, 53, 100720.	14.4	107
39	Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resistance Updates, 2021, 54, 100743.	14.4	107
40	Efficiency of P-glycoprotein-Mediated Exclusion of Rhodamine Dyes from Multidrug-Resistant Cells is Determined by their Passive Transmembrane Movement Rate. FEBS Journal, 1997, 248, 104-112.	0.2	103
41	Therapeutic strategies to overcome taxane resistance in cancer. Drug Resistance Updates, 2021, 55, 100754.	14.4	103
42	Chemotherapeutic Drug-Induced ABCG2 Promoter Demethylation as a Novel Mechanism of Acquired Multidrug Resistance. Neoplasia, 2009, 11, 1359-IN11.	5.3	100
43	Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resistance Updates, 2020, 49, 100671.	14.4	99
44	Redundant angiogenic signaling and tumor drug resistance. Drug Resistance Updates, 2018, 36, 47-76.	14.4	93
45	Novel nanomedicines to overcome cancer multidrug resistance. Drug Resistance Updates, 2021, 58, 100777.	14.4	93
	Inactivating <i>PSMB5</i> Mutations and P-Glycoprotein (Multidrug Resistance-Associated) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 392 To
46	(Immuno)Proteasome Inhibitors in Mononuclear Blood Cells from Patients with Rheumatoid Arthritis, Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 174-182.	2.5	92
47	Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis. Molecular and Cellular Proteomics, 2016, 15, 1281-1298.	3.8	90
48	Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resistance Updates, 2020, 50, 100683.	14.4	90
49	Novel Extracellular Vesicles Mediate an ABCG2-Dependent Anticancer Drug Sequestration and Resistance. Cancer Research, 2005, 65, 10952-10958.	0.9	88
50	Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death and Disease, 2018, 9, 1191.	6.3	88
51	Functional Reconstitution of P-glycoprotein Reveals an Apparent Near Stoichiometric Drug Transport to ATP Hydrolysis. Journal of Biological Chemistry, 1996, 271, 3172-3178.	3.4	87
52	Sulfasalazine is a potent inhibitor of the reduced folate carrier: Implications for combination therapies with methotrexate in rheumatoid arthritis. Arthritis and Rheumatism, 2004, 50, 2130-2139.	6.7	84
53	Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Frontiers in Pharmacology, 2021, 12, 720726.	3.5	81
54	A Dominant Negative Heterozygous G87R Mutation in the Zinc Transporter, ZnT-2 (SLC30A2), Results in Transient Neonatal Zinc Deficiency. Journal of Biological Chemistry, 2012, 287, 29348-29361.	3.4	80

#	Article	IF	CITATIONS
55	Could drugs inhibiting the mevalonate pathway also target cancer stem cells?. Drug Resistance Updates, 2016, 25, 13-25.	14.4	80
56	Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resistance Updates, 2020, 53, 100721.	14.4	80
57	Structure and Function of ABCG2-Rich Extracellular Vesicles Mediating Multidrug Resistance. PLoS ONE, 2011, 6, e16007.	2.5	77
58	β-casein–based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 547-555.	3.3	74
59	Loss of Multidrug Resistance Protein 1 Expression and Folate Efflux Activity Results in a Highly Concentrative Folate Transport in Human Leukemia Cells. Journal of Biological Chemistry, 2003, 278, 6680-6686.	3.4	73
60	A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood, 2008, 112, 2055-2061.	1.4	73
61	Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood, 2009, 113, 4362-4369.	1.4	73
62	Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget, 2017, 8, 24337-24353.	1.8	73
63	Nanomedicine to target multidrug resistant tumors. Drug Resistance Updates, 2020, 52, 100704.	14.4	73
64	Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukaemia cell lines. Biochemical Journal, 2002, 367, 741-750.	3.7	69
65	β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget, 2016, 7, 23322-23334.	1.8	69
66	Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochemical Pharmacology, 2012, 83, 207-217.	4.4	68
67	MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resistance Updates, 2019, 42, 1-11.	14.4	68
68	The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochemical Pharmacology, 2003, 65, 765-771.	4.4	67
69	Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells. Biochemical Pharmacology, 2012, 83, 1340-1348.	4.4	67
70	A Reduced Folate Carrier Mutation Produces Substrate-dependent Alterations in Carrier Mobility in Murine Leukemia Cells and Methotrexate Resistance with Conservation of Growth in 5-Formyltetrahydrofolate. Journal of Biological Chemistry, 1998, 273, 7873-7879.	3.4	66
71	A Mutated Murine Reduced Folate Carrier (RFC1) with Increased Affinity for Folic Acid, Decreased Affinity for Methotrexate, and an Obligatory Anion Requirement for Transport Function. Journal of Biological Chemistry, 1998, 273, 19065-19071.	3.4	63
72	Clustering of Mutations in the First Transmembrane Domain of the Human Reduced Folate Carrier in GW1843U89-resistant Leukemia Cells with Impaired Antifolate Transport and Augmented Folate Uptake. Journal of Biological Chemistry, 2000, 275, 30855-30863.	3.4	63

#	Article	IF	CITATIONS
73	Impact of <i>ABCG2</i> polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics, 2011, 12, 159-170.	1.3	63
74	Emerging roles of F-box proteins in cancer drug resistance. Drug Resistance Updates, 2020, 49, 100673.	14.4	62
75	Interferon-Î ³ -induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology and Oncology, 2014, 7, 7.	17.0	61
76	Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resistance Updates, 2021, 57, 100770.	14.4	59
77	Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis and Rheumatism, 2009, 60, 669-677.	6.7	58
78	ABCG2 Harboring the Gly482 Mutation Confers High-Level Resistance to Various Hydrophilic Antifolates. Cancer Research, 2005, 65, 8414-8422.	0.9	57
79	Albumin and Hyaluronic Acid-Coated Superparamagnetic Iron Oxide Nanoparticles Loaded with Paclitaxel for Biomedical Applications. Molecules, 2017, 22, 1030.	3.8	56
80	Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resistance Updates, 2016, 28, 43-64.	14.4	55
81	Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget, 2018, 9, 20993-21006.	1.8	55
82	Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochemical Pharmacology, 2002, 63, 105-115.	4.4	54
83	Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica, 2013, 98, 1896-1904.	3.5	53
84	In Situ Dimerization of Multiple Wild Type and Mutant Zinc Transporters in Live Cells Using Bimolecular Fluorescence Complementation. Journal of Biological Chemistry, 2014, 289, 7275-7292.	3.4	53
85	New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resistance Updates, 2020, 51, 100702.	14.4	53
86	Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2015, 8, 61.	17.0	49
87	Chapter 4 Molecular Mechanisms of Adaptation to Folate Deficiency. Vitamins and Hormones, 2008, 79, 99-143.	1.7	48
88	Advanced technological tools to study multidrug resistance in cancer. Drug Resistance Updates, 2020, 48, 100658.	14.4	48
89	Reduced folate carrier protein expression in osteosarcoma. Cancer, 2003, 98, 1958-1966.	4.1	47
90	Alterations in the Expression of Transcription Factors and the Reduced Folate Carrier as a Novel Mechanism of Antifolate Resistance in Human Leukemia Cells. Journal of Biological Chemistry, 2003, 278, 8935-8941.	3.4	47

#	Article	IF	CITATIONS
91	Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation(China), 2021, 2, 100103.	9.1	47
92	New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resistance Updates, 2022, 64, 100849.	14.4	47
93	Loss of Folic Acid Exporter Function with Markedly Augmented Folate Accumulation in Lipophilic Antifolate-resistant Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 17460-17466.	3.4	46
94	Reduced Folate Carrier Gene Silencing in Multiple Antifolate-resistant Tumor Cell Lines Is Due to a Simultaneous Loss of Function of Multiple Transcription Factors but Not Promoter Methylation. Journal of Biological Chemistry, 2004, 279, 374-384.	3.4	46
95	Methotrexate Normalizes Upâ€Regulated Folate Pathway Genes in Rheumatoid Arthritis. Arthritis and Rheumatism, 2013, 65, 2791-2802.	6.7	46
96	The Reduced Folate Carrier (RFC) Is Cytotoxic to Cells under Conditions of Severe Folate Deprivation. Journal of Biological Chemistry, 2008, 283, 20687-20695.	3.4	45
97	Heterogeneous Nuclear Ribonucleoprotein H1/H2-dependent Unsplicing of Thymidine Phosphorylase Results in Anticancer Drug Resistance. Journal of Biological Chemistry, 2011, 286, 3741-3754.	3.4	45
98	Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 673-689.	3.3	45
99	LysoTracker and MitoTracker Red are transport substrates of Pâ€glycoprotein: implications for anticancer drug design evading multidrug resistance. Journal of Cellular and Molecular Medicine, 2018, 22, 2131-2141.	3.6	45
100	GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resistance Updates, 2021, 58, 100779.	14.4	45
101	Potentiation of Anticancer-Drug Cytotoxicity by Multidrug-Resistance Chemosensitizers Involves Alterationsin Membrane Fluidity Leading to Increased Membrane Permeability. FEBS Journal, 1995, 228, 1020-1029.	0.2	44
102	The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resistance Updates, 2020, 53, 100729.	14.4	44
103	PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells. Biochemical and Biophysical Research Communications, 2008, 376, 787-792.	2.1	43
104	Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics. PLoS ONE, 2012, 7, e35487.	2.5	43
105	A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resistance Updates, 2017, 31, 43-51.	14.4	43
106	Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer, 2004, 100, 773-782.	4.1	42
107	C421 allele-specific ABCG2 gene amplification confers resistance to the antitumor triazoloacridone C-1305 in human lung cancer cells. Biochemical Pharmacology, 2007, 74, 41-53.	4.4	42
108	Folate concentration dependent transport activity of the Multidrug Resistance Protein 1 (ABCC1). Biochemical Pharmacology, 2004, 67, 1541-1548.	4.4	41

#	Article	IF	CITATIONS
109	Increased Activity of a Novel Low pH Folate Transporter Associated with Lipophilic Antifolate Resistance in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1998, 273, 8106-8111.	3.4	40
110	Antifolate Resistance Associated with Loss of MRP1 Expression and Function in Chinese Hamster Ovary Cells with Markedly Impaired Export of Folate and Cholate. Molecular Pharmacology, 2003, 64, 220-227.	2.3	40
111	Antileukemic Activity and Mechanism of Drug Resistance to the Marine <i>Salinispora tropica</i> Proteasome Inhibitor Salinosporamide A (Marizomib). Molecular Pharmacology, 2014, 86, 12-19.	2.3	39
112	Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation. Journal of Biological Chemistry, 2015, 290, 9050-9063.	3.4	39
113	The Obligatory Intestinal Folate Transporter PCFT (SLC46A1) Is Regulated by Nuclear Respiratory Factor 1. Journal of Biological Chemistry, 2010, 285, 33602-33613.	3.4	38
114	Long non-coding RNA mediated drug resistance in breast cancer. Drug Resistance Updates, 2022, 63, 100851.	14.4	37
115	Cytoplasmic Confinement of Breast Cancer Resistance Protein (BCRP/ABCG2) as a Novel Mechanism of Adaptation to Short-Term Folate Deprivation. Molecular Pharmacology, 2005, 67, 1349-1359.	2.3	36
116	Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Biochemical Pharmacology, 2014, 89, 43-51.	4.4	36
117	The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics, 2017, 9, 1352-1366.	2.4	35
118	Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clinical Microbiology Reviews, 2022, 35, .	13.6	35
119	Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death and Disease, 2019, 10, 390.	6.3	34
120	Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. International Journal of Cancer, 2016, 138, 1645-1656.	5.1	33
121	Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death and Disease, 2019, 10, 702.	6.3	33
122	The Lysosomotropic Activity of Hydrophobic Weak Base Drugs is Mediated via Their Intercalation into the Lysosomal Membrane. Cells, 2020, 9, 1082.	4.1	32
123	Mutant Gly482 and Thr482 ABCG2 mediate high-level resistance to lipophilic antifolates. Cancer Chemotherapy and Pharmacology, 2006, 58, 826-834.	2.3	31
124	ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. PLoS Computational Biology, 2019, 15, e1006882.	3.2	31
125	Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resistance Updates, 2016, 26, 10-27.	14.4	30
126	Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding. Biochemical and Biophysical Research Communications, 2009, 386, 426-431.	2.1	29

#	Article	IF	CITATIONS
127	The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resistance Updates, 2017, 30, 15-27.	14.4	29
128	β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 240-249.	4.3	29
129	Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. British Journal of Cancer, 2020, 123, 644-656.	6.4	29
130	Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resistance Updates, 2022, 61, 100822.	14.4	29
131	The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resistance Updates, 2022, 62, 100833.	14.4	29
132	Probing the interaction of the multidrug-resistance phenotype with the polypeptide ionophore gramicidin D via functional channel formation. FEBS Journal, 1994, 222, 813-824.	0.2	28
133	Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrients, 2020, 12, 1500.	4.1	28
134	The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget, 2018, 9, 16861-16882.	1.8	27
135	Alteration of Mitochondrial Gene Expression and Disruption of Respiratory Function by the Lipophilic Antifolate Pyrimethamine in Mammalian Cells. Journal of Biological Chemistry, 1995, 270, 20668-20676.	3.4	25
136	Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance. Cancer Cell International, 2021, 21, 53.	4.1	25
137	Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resistance Updates, 2020, 52, 100703.	14.4	25
138	Coexistence of multiple mechanisms of PT523 resistance in human leukemia cells harboring 3 reduced folate carrier alleles: transcriptional silencing, inactivating mutations, and allele loss. Blood, 2006, 107, 3288-3294.	1.4	24
139	Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discovery, 2019, 5, 144.	4.7	24
140	Structural Determinants of Imidazoacridinones Facilitating Antitumor Activity Are Crucial for Substrate Recognition by ABCG2. Molecular Pharmacology, 2009, 75, 1149-1159.	2.3	23
141	Gene expression profiling of leukemia T-cells resistant to methotrexate and 7-hydroxymethotrexate reveals alterations that preserve intracellular levels of folate and nucleotide biosynthesis. Biochemical Pharmacology, 2009, 77, 1410-1417.	4.4	23
142	Functional elements in the minimal promoter of the human proton-coupled folate transporter. Biochemical and Biophysical Research Communications, 2009, 388, 79-85.	2.1	23
143	The role of endolysosomal trafficking in anticancer drug resistance. Drug Resistance Updates, 2021, 57, 100769.	14.4	23
144	Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget, 2016, 7, 5240-5257.	1.8	23

#	Article	IF	CITATIONS
145	Characterization of a human alternatively spliced truncated reduced folate carrier increasing folate accumulation in parental leukemia cells. FEBS Journal, 2000, 267, 690-702.	0.2	22
146	Hostâ€defense peptide mimicry for novel antitumor agents. FASEB Journal, 2009, 23, 4299-4307.	0.5	21
147	Targeted nanomedicine modalities for prostate cancer treatment. Drug Resistance Updates, 2021, 56, 100762.	14.4	20
148	Epigenetic enzyme mutations as mediators of anti-cancer drug resistance. Drug Resistance Updates, 2022, 61, 100821.	14.4	20
149	Plasmodium falciparum: Synchronization of cultures with dl-α-difluoromethylornithine, an inhibitor of polyamine biosynthesis. Experimental Parasitology, 1986, 61, 229-235.	1.2	19
150	Characterization by flow cytometry of fluorescein-methotrexate transport in chinese hamster ovary cells. Cytometry, 1989, 10, 50-55.	1.8	19
151	Disparate mechanisms of antifolate resistance provoked by methotrexate and its metabolite 7-hydroxymethotrexate in leukemia cells: implications for efficacy of methotrexate therapy. Blood, 2004, 104, 4194-4201.	1.4	19
152	The Impact of Folate Status on the Efficacy of Colorectal Cancer Treatment. Current Drug Metabolism, 2011, 12, 975-984.	1.2	19
153	Protein-coated corrole nanoparticles for the treatment of prostate cancer cells. Cell Death Discovery, 2020, 6, 67.	4.7	19
154	Inhibitory effects of prostaglandin A1 on membrane transport of folates mediated by both the reduced folate carrier and ATP-driven exporters. Biochemical Pharmacology, 1999, 58, 1321-1327.	4.4	18
155	Impaired CREB-1 Phosphorylation in Antifolate-Resistant Cell Lines with Down-Regulation of the Reduced Folate Carrier Gene. Molecular Pharmacology, 2004, 66, 1536-1543.	2.3	18
156	Disruption of P-glycoprotein anticancer drug efflux activity by a small recombinant single-chain Fv antibody fragment targeted to an extracellular epitope. International Journal of Cancer, 2004, 109, 750-758.	5.1	17
157	Riboflavin concentration within ABCG2-rich extracellular vesicles is a novel marker for multidrug resistance in malignant cells. Biochemical and Biophysical Research Communications, 2009, 380, 5-10.	2.1	17
158	Overcoming bortezomib resistance in human B cells by anti-CD20/rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors. Experimental Hematology and Oncology, 2013, 2, 2.	5.0	17
159	The association of aberrant folylpolyglutamate synthetase splicing with ex vivo methotrexate resistance and clinical outcome in childhood acute lymphoblastic leukemia. Haematologica, 2016, 101, e291-e294.	3.5	17
160	Molecular Basis of Transient Neonatal Zinc Deficiency. Journal of Biological Chemistry, 2016, 291, 13546-13559.	3.4	17
161	Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics, 2019, 11, 216.	4.5	17
162	Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget, 2016, 7, 74779-74796.	1.8	16

#	Article	IF	CITATIONS
163	Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia. Oncotarget, 2014, 5, 9183-9198.	1.8	16
164	Plasmodium falciparum: Purification, properties, and immunochemical study of ornithine decarboxylase, the key enzyme in polyamine biosynthesis. Experimental Parasitology, 1988, 67, 20-30.	1.2	15
165	Targeting multidrug resistant tumor cells with a recombinant single-chain FV fragment directed to P-glycoprotein. International Journal of Cancer, 2001, 94, 864-872.	5.1	15
166	Sulfasalazine Down-Regulates the Expression of the Angiogenic Factors Platelet-Derived Endothelial Cell Growth Factor/Thymidine Phosphorylase and Interleukin-8 in Human Monocytic-Macrophage THP1 and U937 Cells. Molecular Pharmacology, 2004, 66, 1054-1060.	2.3	15
167	Targeting an extracellular epitope of the human multidrug resistance protein 1 (MRP1) in malignant cells with a novel recombinant single chain Fv antibody. International Journal of Cancer, 2004, 110, 882-890.	5.1	15
168	Lack of Plasma Membrane Targeting of a G172D Mutant Thiamine Transporter Derived from Rogers Syndrome Family. Molecular Medicine, 2002, 8, 462-474.	4.4	14
169	Loss of Sp1 function via inhibitory phosphorylation in antifolate-resistant human leukemia cells with down-regulation of the reduced folate carrier. Blood, 2006, 107, 708-715.	1.4	14
170	Computer modelling of antifolate inhibition of folate metabolism using hybrid functional petri nets. Journal of Theoretical Biology, 2006, 240, 637-647.	1.7	13
171	Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter. PLoS Computational Biology, 2018, 14, e1006503.	3.2	13
172	Association of altered folylpolyglutamate synthetase pre-mRNA splicing with methotrexate unresponsiveness in early rheumatoid arthritis. Rheumatology, 2021, 60, 1273-1281.	1.9	13
173	The Reduced Folate Carrier Gene Is a Novel Selectable Marker for Recombinant Protein Overexpression. Molecular Pharmacology, 2005, 68, 616-624.	2.3	12
174	Differential reversal of lipophilic antifolate resistance in mammalian cells with modulators of the multidrug resistance phenotype. Anti-Cancer Drugs, 1993, 4, 395-406.	1.4	11
175	Sulfasalazine sensitises human monocytic/macrophage cells for glucocorticoids by upregulation of glucocorticoid receptor and glucocorticoid induced apoptosis. Annals of the Rheumatic Diseases, 2007, 66, 1289-1295.	0.9	11
176	Optical and Magnetic Properties of Conjugate Structures of PbSe Quantum Dots and γâ€Fe ₂ O ₃ Nanoparticles. ChemPhysChem, 2009, 10, 2235-2241.	2.1	11
177	Characterization by flow cytometry and fluorescein-methotrexate labeling of hydrophilic and lipophilic antifolate resistance in cultured mammalian cells. Anti-Cancer Drugs, 1993, 4, 535-544.	1.4	10
178	Targeted Nanoparticles Harboring Jasmine-Oil-Entrapped Paclitaxel for Elimination of Lung Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 1019.	4.1	10
179	Clinical implications of germline variations for treatment outcome and drug resistance for small molecule kinase inhibitors in patients with non-small cell lung cancer. Drug Resistance Updates, 2022, 62, 100832.	14.4	10
180	Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. Journal of Medicinal Chemistry, 2022, 65, 6100-6115.	6.4	10

Yehuda Gérard Assaraf

#	Article	IF	CITATIONS
181	High proportion of transient neonatal zinc deficiency causing alleles in the general population. Journal of Cellular and Molecular Medicine, 2019, 23, 828-840.	3.6	9
182	Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics, 2022, 14, 88.	4.5	9
183	Reduced folate carrier (RFC-1) gene expression in normal and psoriatic skin. Archives of Dermatological Research, 1998, 290, 656-660.	1.9	8
184	Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia. Cancers, 2020, 12, 1247.	3.7	8
185	Probing ATP-dependent conformational changes in the multidrug resistance protein 1 (MRP1/ABCC1) in live tumor cells with a novel recombinant single-chain Fv antibody targeted to the extracellular N-terminus. International Journal of Cancer, 2005, 116, 703-709.	5.1	7
186	Structural recognition of tubulysin B derivatives by multidrug resistance efflux transporters in human cancer cells. Oncotarget, 2017, 8, 49973-49987.	1.8	7
187	Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Investigational New Drugs, 2018, 36, 797-809.	2.6	6
188	Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Scientific Reports, 2019, 9, 8878.	3.3	6
189	Folylpoly-É£-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. Journal of Proteomics, 2021, 239, 104169.	2.4	6
190	Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome family. FEBS Journal, 2003, 270, 4469-4477.	0.2	5
191	Lack of plasma membrane targeting of a G172D mutant thiamine transporter derived from Rogers syndrome family. Molecular Medicine, 2002, 8, 462-74.	4.4	5
192	A fluorescein-methotrexate-based flow cytometric bioassay for measurement of plasma methotrexate and trimetrexate levels. Analytical Biochemistry, 1989, 178, 287-293.	2.4	4
193	Identification of Genetic Diseases Using Breast Milk Cell Analysis: The Case of Transient Neonatal Zinc Deficiency (TNZD). Cellular & Molecular Medicine: Open Access, 2017, 03, .	0.4	4
194	Prognostic and Predictive Roles of Thymidylate Synthase Expression in Lung Cancer: The Debate Is Still Open. Journal of Clinical Oncology, 2016, 34, 511-512.	1.6	3
195	Statins Potentiate Aminopeptidase Inhibitor (pro)Drug Activity in Acute Myeloid Leukemia Cells. Blood, 2018, 132, 3945-3945.	1.4	2
196	The reduced folate carrier (RFC-1) gene is expressed in the murine epidermis. Archives of Dermatological Research, 1998, 290, 394-396.	1.9	1