Craig W Osenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8099775/publications.pdf

Version: 2024-02-01

107 papers 7,871 citations

⁷⁶²⁹⁴
40
h-index

84 g-index

108 all docs

108 docs citations

108 times ranked 8935 citing authors

#	Article	IF	CITATIONS
1	Marine reserves: size and age do matter. Ecology Letters, 2008, 11, 481-489.	3.0	516
2	Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 2011, 475, 214-216.	13.7	413
3	Are Plant Populations Seed Limited? A Critique and Metaâ€Analysis of Seed Addition Experiments. American Naturalist, 2007, 170, 128-142.	1.0	406
4	Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos, 2000, 89, 428-439.	1.2	390
5	RESOLVING ECOLOGICAL QUESTIONS THROUGH META-ANALYSIS: GOALS, METRICS, AND MODELS. Ecology, 1999, 80, 1105-1117.	1.5	341
6	Faster Decomposition Under Increased Atmospheric CO ₂ Limits Soil Carbon Storage. Science, 2014, 344, 508-509.	6.0	266
7	Marine reserves: Fish life history and ecological traits matter. Ecological Applications, 2010, 20, 830-839.	1.8	231
8	Effects of Body Size on the Predatorâ€Prey Interaction Between Pumpkinseed Sunfish and Gastropods. Ecological Monographs, 1989, 59, 405-432.	2.4	227
9	Effect Size in Ecological Experiments: The Application of Biological Models in Metaâ€Analysis. American Naturalist, 1997, 150, 798-812.	1.0	214
10	Detection of Environmental Impacts: Natural Variability, Effect Size, and Power Analysis., 1994, 4, 16-30.		212
11	Assessing Effects of Unreplicated Perturbations: No Simple Solutions. Ecology, 1992, 73, 1396-1404.	1.5	210
12	THE INFLUENCE OF INTRAGUILD PREDATION ON PREY SUPPRESSION AND PREY RELEASE: A META-ANALYSIS. Ecology, 2007, 88, 2689-2696.	1.5	192
13	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	1.5	192
14	Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four metaâ€analyses. Global Change Biology, 2009, 15, 2020-2034.	4.2	180
15	Size correction: comparing morphological traits among populations and environments. Oecologia, 2006, 148, 547-554.	0.9	179
16	Two-Stage Life Histories in Fish: The Interaction Between Juvenile Competition and Adult Performance. Ecology, 1992, 73, 255-267.	1.5	176
17	Perturbation and Resilience: A Long-Term, Whole-Lake Study of Predator Extinction and Reintroduction. Ecology, 1995, 76, 2347-2360.	1.5	173
18	Competition between Predator and Prey: Resource-Based Mechanisms and Implications for Stage-Structured Dynamics. Ecology, 1995, 76, 1758-1771.	1.5	151

#	Article	IF	CITATIONS
19	Growth Patterns in Bluegill (<i>Lepomis macrochirus</i>) and Pumpkinseed (<i>L</i> . <i>gibbosus</i>) Sunfish: Environmental Variation and the Importance of Ontogenetic Niche Shifts. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 17-26.	0.7	149
20	META-ANALYSIS OF MARINE NUTRIENT-ENRICHMENT EXPERIMENTS: VARIATION IN THE MAGNITUDE OF NUTRIENT LIMITATION. Ecology, 1999, 80, 1157-1167.	1.5	142
21	Trophic Polymorphism in the Pumpkinseed Sunfish (Lepomis gibbosus Linnaeus): Effects of Environment on Ontogeny. Functional Ecology, 1991, 5, 40.	1.7	141
22	Benefits for Plants in Ant-Plant Protective Mutualisms: A Meta-Analysis. PLoS ONE, 2010, 5, e14308.	1.1	139
23	Predicting soil carbon loss with warming. Nature, 2018, 554, E4-E5.	13.7	122
24	Signals of status in wintering white-crowned sparrows, Zonotrichia leucophrys gambelii. Animal Behaviour, 1984, 32, 86-93.	0.8	112
25	Trophic Relations and Ontogenetic Niche Shifts in Aquatic Ecosystems. , 1988, , 219-235.		110
26	CRYPTIC DENSITY DEPENDENCE: EFFECTS OF COVARIATION BETWEEN DENSITY AND SITE QUALITY IN REEF FISH. Ecology, 2003, 84, 46-52.	1.5	101
27	Faster turnover of new soil carbon inputs under increased atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2017, 23, 4420-4429.	4.2	96
28	Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecology Letters, 2012, 15, 1449-1456.	3.0	94
29	Stage-Structured Interactions in Bluegill: Consequences of Abult Resource Variation. Ecology, 1993, 74, 2381-2394.	1.5	90
30	Variation in resource abundance affects diet and feeding morphology in the pumpkinseed sunfish (Lepomis gibbosus). Oecologia, 1992, 90, 8-13.	0.9	85
31	Rethinking ecological inference: density dependence in reef fishes. Ecology Letters, 2002, 5, 715-721.	3.0	85
32	Resource limitation, competition and the influence of life history in a freshwater snail community. Oecologia, 1989, 79, 512-519.	0.9	81
33	The Relative Importance of Resource Limitation and Predator Limitation in Food Chains. , 1996, , 134-148.		68
34	COMPLEMENTARY FORAGING BEHAVIORS ALLOW COEXISTENCE OF TWO CONSUMERS. Ecology, 1999, 80, 2358-2372.	1.5	68
35	A quantitative framework to evaluate the attraction?production controversy. ICES Journal of Marine Science, 2002, 59, S214-S221.	1.2	67
36	Plants as Reef Fish: Fitting the Functional Form of Seedling Recruitment. American Naturalist, 2007, 170, 167-183.	1.0	67

#	Article	IF	CITATIONS
37	Quantifying the effects of multiple processes on local abundance: a cohort approach for open populations. Ecology Letters, 1999, 2, 294-303.	3.0	63
38	Multi-predator effects across life-history stages: non-additivity of egg- and larval-stage predation in an African treefrog. Ecology Letters, 2003, 6, 503-508.	3.0	62
39	Meta-analysis in Ecology: Concepts, Statistics, and Applications. Ecology, 1999, 80, 1103-1104.	1.5	59
40	Ontogenetic changes in habitat selection during settlement in a coral reef fish: ecological determinants and sensory mechanisms. Coral Reefs, 2007, 26, 423-432.	0.9	56
41	Experimental and observational patterns of density-dependent settlement and survival in the marine fish Gobiosoma. Oecologia, 2002, 130, 205-215.	0.9	55
42	Detecting Ecological Impacts Caused by Human Activities. , 1996, , 3-16.		53
43	Spatial Heterogeneity, Host Movement and Mosquito-Borne Disease Transmission. PLoS ONE, 2015, 10, e0127552.	1.1	47
44	The Golden Rule of Reviewing. American Naturalist, 2009, 173, E155-E158.	1.0	45
45	Guard crabs alleviate deleterious effects of vermetid snails on a branching coral. Coral Reefs, 2010, 29, 1019-1022.	0.9	42
46	QUANTIFYING SITE QUALITY IN A HETEROGENEOUS LANDSCAPE: RECRUITMENT OF A REEF FISH. Ecology, 2008, 89, 86-94.	1.5	41
47	The vermetid gastropod <i>Dendropoma maximum</i> reduces coral growth and survival. Biology Letters, 2010, 6, 815-818.	1.0	39
48	Bias in metaâ€analyses using Hedges' <i>d</i> . Ecosphere, 2018, 9, e02419.	1.0	36
49	Distribution and abundance of benthic and demersal macrofauna within a natural hydrocarbon seep. Marine Ecology - Progress Series, 1996, 138, 71-82.	0.9	35
50	Progressiveâ€Change BACIPS: a flexible approach for environmental impact assessment. Methods in Ecology and Evolution, 2017, 8, 288-296.	2.2	34
51	Housekeeping Mutualisms: Do More Symbionts Facilitate Host Performance?. PLoS ONE, 2012, 7, e32079.	1.1	33
52	CONFLICTING MANAGEMENT GOALS: MANATEES AND INVASIVE COMPETITORS INHIBIT RESTORATION OF A NATIVE MACROPHYTE. , 2004, 14, 571-586.		31
53	An assessment of statistical methods for nonindependent data in ecological metaâ€analyses. Ecology, 2020, 101, e03184.	1.5	31
54	Mechanisms and consequences of shell fouling in the kelp snail, Norrisia norrisi (Sowerby) (Trochidae): Indirect effects of octopus drilling. Journal of Experimental Marine Biology and Ecology, 1983, 69, 267-281.	0.7	30

#	Article	IF	Citations
55	Title is missing!. Aquarium Sciences and Conservation, 2001, 3, 95-105.	0.1	30
56	ECOLOGY – Assessing effects of marine protected areas: confounding in space and possible solutions. , 2011, , 143-167.		29
57	Propagule redirection: Habitat availability reduces colonization and increases recruitment in reef fishes. Ecology, 2010, 91, 2826-2832.	1.5	27
58	SPECIES INTRODUCTIONS AND THEIR ECOLOGICAL CONSEQUENCES: AN EXAMPLE WITH CONGENERIC SUNFISH. , 2000, 10, 612-625.		26
59	Ecological evaluation of a marine protected area network: a progressiveâ€change <scp>BACIPS</scp> approach. Ecosphere, 2019, 10, e02576.	1.0	26
60	Effects of the fish anesthetic, clove oil (eugenol), on coral health and growth. Journal of Experimental Marine Biology and Ecology, 2009, 369, 53-57.	0.7	25
61	Using rarefaction to isolate the effects of patch size and sampling effort on beta diversity. Ecosphere, 2016, 7, e01612.	1.0	23
62	Born at the right time? A conceptual framework linking reproduction, development, and settlement in reef fish. Ecology, 2018, 99, 116-126.	1.5	23
63	Reproductive phenology across the lunar cycle: parental decisions, offspring responses, and consequences for reef fish. Ecology, 2020, 101, e03086.	1.5	23
64	Sublethal toxicant effects with dynamic energy budget theory: application to mussel outplants. Ecotoxicology, 2010, 19, 38-47.	1.1	20
65	Consistent deleterious effects of vermetid gastropods on coral performance. Journal of Experimental Marine Biology and Ecology, 2013, 439, 1-6.	0.7	20
66	An annual cycle of biomass and productivity of Vallisneria americana in a subtropical spring-fed estuary. Aquatic Botany, 2007, 87, 61-68.	0.8	18
67	A Framework for Assessing Impacts of Marine Protected Areas in Moorea (French Polynesia) 1. Pacific Science, 2008, 62, 431-441.	0.2	18
68	Application of a twoâ€pool model to soil carbon dynamics under elevated <scp>CO</scp> ₂ . Global Change Biology, 2015, 21, 4293-4297.	4.2	18
69	Detection of Environmental Impacts. , 1996, , 83-108.		16
70	Spatial Scale of Ecological Effects Associated with an Open Coast Discharge of Produced Water., 1992,, 387-402.		16
71	Lunar rhythms in growth of larval fish. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202609.	1.2	15
72	Effects of Produced Water on Early Life Stages of a Sea Urchin: Stage-Specific Responses and Delayed Expression., 1992,, 431-444.		15

#	Article	IF	CITATIONS
73	Optimal Sampling Strategies for Detecting Zoonotic Disease Epidemics. PLoS Computational Biology, 2014, 10, e1003668.	1.5	14
74	Comparing traditional and Bayesian approaches to ecological metaâ€analysis. Methods in Ecology and Evolution, 2020, 11, 1286-1295.	2.2	14
75	Differential movement and movement bias models for marine protected areas. Journal of Mathematical Biology, 2012, 64, 667-696.	0.8	13
76	Random movement of predators can eliminate trophic cascadesÂinÂmarine protected areas. Ecosphere, 2016, 7, e01421.	1.0	12
77	Enrichment scale determines herbivore control of primary producers. Oecologia, 2016, 180, 833-840.	0.9	12
78	Are Plant Populations Seed Limited? A Critique and Meta-Analysis of Seed Addition Experiments. American Naturalist, 2007, 170, 128.	1.0	12
79	Resolving within- and between-population variation in feeding ecology with a biomechanical model. Oecologia, 2004, 141, 57-65.	0.9	11
80	Algae dictate multiple stressor effects on coral microbiomes. Coral Reefs, 2019, 38, 229-240.	0.9	11
81	Habitatâ€dependent movement rate can determine the efficacy of marine protected areas. Ecology, 2018, 99, 2485-2495.	1.5	10
82	An assessment of statistical methods for nonâ€independent data in ecological metaâ€analyses: Reply. Ecology, 2022, 103, e03578.	1.5	9
83	Population sinks in the Upper Florida Keys: the importance of demographic variation in population dynamics of the marine shrimp Stenopus hispidus. Marine Ecology - Progress Series, 2008, 360, 135-145.	0.9	8
84	Detecting Human Impacts in Marine Habitats. , 1994, 4, 1-2.		7
85	When environmental factors become stressors: interactive effects of vermetid gastropods and sedimentation on corals. Biology Letters, 2017, 13, 20160957.	1.0	7
86	Meta-analysis: Synthesis or statistical subjugation?. Integrative Biology: Issues, News, and Reviews, 1998, 1, 37-41.	0.7	6
87	Vermetid gastropods modify physical and chemical conditions above coral–algal interactions. Oecologia, 2018, 186, 1091-1099.	0.9	6
88	Concordance of Phosphorus Limitation in Lakes: Bacterioplankton, Phytoplankton, Epiphyte-Snail Consumers, and Rooted Macrophytes. Ecological Studies, 1998, , 318-325.	0.4	6
89	Live coral cover may provide resilience to damage from the vermetid gastropod Dendropoma maximum by preventing larval settlement. Coral Reefs, 2014, 33, 1137-1144.	0.9	5
90	Variation in the growth and survival of the tropical vermetid gastropod Ceraesignum maximum is driven by size, habitat, and density. Marine Biology, 2016, 163, 1.	0.7	4

#	Article	IF	Citations
91	Landscape configuration drives persistent spatial patterns of occupant distributions. Theoretical Ecology, 2018, 11, 111-127.	0.4	4
92	Local versus site-level effects of algae on coral microbial communities. Royal Society Open Science, 2021, 8, 210035.	1,1	4
93	The Art and Science of Administrative Environmental Impact Assessment. , 1996, , 281-293.		4
94	Predicted and Observed Environmental Impacts. , 1996, , 345-369.		4
95	How moonlight shapes environments, life histories, and ecological interactions on coral reefs. Emerging Topics in Life Sciences, 2022, 6, 45-56.	1.1	4
96	Death and life: Muricid snails consume the vermetid gastropod, Dendropoma maximum, and use empty shells for reproduction. Coral Reefs, 2014, 33, 497-497.	0.9	3
97	Mass mortality of the vermetid gastropod Ceraesignum maximum. Coral Reefs, 2016, 35, 1027-1032.	0.9	3
98	No clean coal for stream animals. Nature Sustainability, 2018, 1, 160-161.	11.5	3
99	Plants as Reef Fish: Fitting the Functional Form of Seedling Recruitment. American Naturalist, 2007, 170, 167.	1.0	3
100	Spatial aggregation of aquatic habitats affects oviposition patterns in Aedes mosquitoes. Oecologia, 2019, 190, 835-845.	0.9	2
101	Mobility and its sensitivity to fitness differences determine consumer–resource distributions. Royal Society Open Science, 2020, 7, 200247.	1.1	2
102	Extended phenotypes on coral reefs: cryptic phenotypes modulate coralâ€vermetid interactions. Ecology, 2021, 102, e03215.	1.5	1
103	Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, <i>Littoraria irrorata</i> . Biological Bulletin, 2022, 242, 173-196.	0.7	1
104	Reproductive investment in relation to survival risk in a livebearing fish. Journal of Fish Biology, 2003, 63, 236-236.	0.7	0
105	Oecologia enters a new era. Oecologia, 2007, 153, 207-208.	0.9	0
106	Cryptic density dependence: integrating supply-side ecology with population regulation., 0,, 236-241.		0
107	Hidden predators on coral reefs: muricid consumption of vermetids. Marine Ecology - Progress Series, 2019, 615, 121-131.	0.9	0