List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reticular synthesis and the design of new materials. Nature, 2003, 423, 705-714.	27.8	8,374
2	Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 2002, 295, 469-472.	12.6	7,254
3	Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.	27.8	7,021
4	Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metalâ^'Organic Carboxylate Frameworks. Accounts of Chemical Research, 2001, 34, 319-330.	15.6	4,980
5	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.	12.6	4,435
6	A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427, 523-527.	27.8	2,574
7	Rod Packings and Metalâ~'Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 2005, 127, 1504-1518.	13.7	2,186
8	Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495, 80-84.	27.8	2,005
9	Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores. Science, 2001, 291, 1021-1023.	12.6	1,211
10	Establishing Microporosity in Open Metalâ^'Organic Frameworks:Â Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 1998, 120, 8571-8572.	13.7	1,060
11	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	38.1	1,033
12	Highly Porous and Stable Metalâ^'Organic Frameworks:Â Structure Design and Sorption Properties. Journal of the American Chemical Society, 2000, 122, 1391-1397.	13.7	1,010
13	Frameworks for Extended Solids: Geometrical Design Principles. Journal of Solid State Chemistry, 2000, 152, 3-20.	2.9	931
14	A metal-organic framework–based splitter for separating propylene from propane. Science, 2016, 353, 137-140.	12.6	892
15	From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. Journal of the American Chemical Society, 1999, 121, 1651-1657.	13.7	843
16	Assembly of Metalâ^'Organic Frameworks from Large Organic and Inorganic Secondary Building Units:Â New Examples and Simplifying Principles for Complex Structuresâ–μ. Journal of the American Chemical Society, 2001, 123, 8239-8247.	13.7	789
17	A supermolecular building approach for the design and construction of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6141-6172.	38.1	708
18	Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 2015, 44, 228-249.	38.1	662

#	Article	IF	CITATIONS
19	Porous Metalâ^'Organic Polyhedra:  25 à Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks. Journal of the American Chemical Society, 2001, 123, 4368-4369.	13.7	639
20	Assembly of Metal–Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks: A Porous MOF with soc Topology and High Hydrogen Storage. Angewandte Chemie - International Edition, 2007, 46, 3278-3283.	13.8	633
21	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	13.7	632
22	Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 1833-1835.	13.7	628
23	Layered Mg <i>_{<i>x</i>}</i> V ₂ O ₅ · <i>n</i> H ₂ O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Letters, 2018, 3, 2602-2609.	17.4	581
24	Zeolite- <i>like</i> Metalâ^'Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts. Journal of the American Chemical Society, 2008, 130, 12639-12641.	13.7	579
25	Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nature Communications, 2014, 5, 4228.	12.8	510
26	Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO ₂ Adsorption Energetics and Uptake. Journal of the American Chemical Society, 2013, 135, 7660-7667.	13.7	474
27	Zeolite- <i>like</i> Metalâ^'Organic Frameworks (ZMOFs) as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H ₂ -(<i>rho</i> -ZMOF) Interaction Studies. Journal of the American Chemical Society, 2009, 131, 2864-2870.	13.7	456
28	A Microporous Lanthanide-Organic Framework. Angewandte Chemie - International Edition, 1999, 38, 2590-2594.	13.8	452
29	Cu2(ATC)·6H2O: Design of Open Metal Sites in Porous Metalâ^'Organic Crystals (ATC: 1,3,5,7-Adamantane)	[j <u>FJ Q</u> q1]	L 0,784314 r 451
30	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	27.5	449
31	Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities. Chemical Communications, 2006, , 1488.	4.1	438
32	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	27.5	416
33	Large Free Volume in Maximally Interpenetrating Networks:Â The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society, 2000, 122, 4843-4844.	13.7	396
34	Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metalâ \in forganic frameworks. Nature Chemistry, 2014, 6, 673-680.	13.6	396
35	Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2:  A Framework Deliberately Designed To Have the NbO Structure Type. Journal of the American Chemical Society, 2002, 124, 376-377.	13.7	383
36	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	13.6	371

#	Article	IF	CITATIONS
37	Ag ₂₉ (BDT) ₁₂ (TPP) ₄ : A Tetravalent Nanocluster. Journal of the American Chemical Society, 2015, 137, 11970-11975.	13.7	369
38	A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO ₂ Removal and Air Capture Using Physisorption. Journal of the American Chemical Society, 2016, 138, 9301-9307.	13.7	366
39	Temperature and Concentration Control over Interpenetration in a Metalâ 'Organic Material. Journal of the American Chemical Society, 2009, 131, 17040-17041.	13.7	361
40	Geometric requirements and examples of important structures in the assembly of square building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4900-4904.	7.1	353
41	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	13.7	326
42	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	13.7	308
43	Supermolecular Building Blocks (SBBs) and Crystal Design:  12-Connected Open Frameworks Based on a Molecular Cubohemioctahedron. Journal of the American Chemical Society, 2008, 130, 1560-1561.	13.7	300
44	Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks The National Science Foundation support to M.O'K. (DMR- 9804817) and O.M.Y. (DMR-9980469) is gratefully acknowledged Angewandte Chemie - International Edition, 2002, 41, 284.	13.8	293
45	Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nature Communications, 2019, 10, 1328.	12.8	292
46	Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. CheM, 2018, 4, 94-105.	11.7	282
47	Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 2017, 356, 731-735.	12.6	275
48	Advances in the chemistry of metal–organic frameworks. CrystEngComm, 2002, 4, 401-404.	2.6	271
49	Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach. Journal of the American Chemical Society, 2013, 135, 10234-10237.	13.7	267
50	Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials?. Chemical Engineering Journal, 2016, 296, 386-397.	12.7	260
51	Templateâ€Directed Assembly of Zeoliteâ€like Metal–Organic Frameworks (ZMOFs): A usfâ€ZMOF with an Unprecedented Zeolite Topology. Angewandte Chemie - International Edition, 2008, 47, 8446-8449.	13.8	259
52	Templated Synthesis, Postsynthetic Metal Exchange, and Properties of a Porphyrin-Encapsulating Metal–Organic Material. Journal of the American Chemical Society, 2012, 134, 924-927.	13.7	238
53	Metal–Organic Framework-Based Separators for Enhancing Li–S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367	17.4	229
54	A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 2017, 139, 10715-10722.	13.7	224

#	Article	IF	CITATIONS
55	Ultraâ€Tuning of the Rareâ€Earth fcuâ€MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angewandte Chemie - International Edition, 2015, 54, 14353-14358.	13.8	222
56	MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors. ACS Sensors, 2017, 2, 1294-1301.	7.8	220
57	Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2018, 3, 1059-1066.	39.5	214
58	H ₂ S Sensors: Fumarateâ€Based fcuâ€MOF Thin Film Grown on a Capacitive Interdigitated Electrode. Angewandte Chemie - International Edition, 2016, 55, 15879-15883.	13.8	213
59	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	13.8	204
60	Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7245-7249.	13.7	203
61	Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH ₄ Storage. Journal of the American Chemical Society, 2016, 138, 1568-1574.	13.7	193
62	On the Mechanism of Hydrogen Storage in a Metalâ^'Organic Framework Material. Journal of the American Chemical Society, 2007, 129, 15202-15210.	13.7	182
63	Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nature Materials, 2020, 19, 1346-1353.	27.5	181
64	Quest for Zeolite-like Metalâ^'Organic Frameworks:  On Pyrimidinecarboxylate Bis-Chelating Bridging Ligands. Journal of the American Chemical Society, 2008, 130, 3768-3770.	13.7	178
65	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816.	13.8	176
66	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	17.4	175
67	Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. ACS Applied Materials & Interfaces, 2016, 8, 20459-20464.	8.0	170
68	The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study. Chemical Communications, 2014, 50, 2089.	4.1	167
69	[Ag ₆₇ (SPhMe ₂) ₃₂ (PPh ₃) ₈] ³⁺ : Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster. Journal of the American Chemical Society, 2016, 138, 14727-14732.	13.7	167
70	4-Connected Metalâ^'Organic Assemblies Mediated via Heterochelation and Bridging of Single Metal Ions: Kagomé Lattice and the M6L12Octahedron. Journal of the American Chemical Society, 2005, 127, 7266-7267.	13.7	166
71	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	48.7	166
72	The unique rht-MOF platform, ideal for pinpointing the functionalization and CO ₂ adsorption relationship. Chemical Communications, 2012, 48, 1455-1457.	4.1	163

#	Article	IF	CITATIONS
73	Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. Journal of the American Chemical Society, 2015, 137, 5421-5430.	13.7	163
74	Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606, 706-712.	27.8	163
75	Recent Progress on Microfine Design of Metal–Organic Frameworks: Structure Regulation and Gas Sorption and Separation. Advanced Materials, 2020, 32, e2002563.	21.0	160
76	Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science, 2022, 376, 1080-1087.	12.6	160
77	Zeolite- <i>like</i> Metalâ^'Organic Frameworks (ZMOFs) Based on the Directed Assembly of Finite Metalâ^'Organic Cubes (MOCs). Journal of the American Chemical Society, 2009, 131, 17753-17755.	13.7	156
78	The Next Chapter in MOF Pillaring Strategies: Trigonal Heterofunctional Ligands To Access Targeted High-Connected Three Dimensional Nets, Isoreticular Platforms. Journal of the American Chemical Society, 2011, 133, 17532-17535.	13.7	155
79	Template-Directed Synthesis of Nets Based upon Octahemioctahedral Cages That Encapsulate Catalytically Active Metalloporphyrins. Journal of the American Chemical Society, 2012, 134, 928-933.	13.7	155
80	Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zincâ€lon Batteries. Advanced Materials, 2021, 33, e2103617.	21.0	151
81	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	47.7	149
82	Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF. Microporous and Mesoporous Materials, 2010, 129, 345-353.	4.4	148
83	Directed assembly of metal–organic cubes from deliberately predesigned molecular building blocks. Chemical Communications, 2004, , 2806-2807.	4.1	146
84	Conductive Metal–Organic Frameworks Selectively Grown on Laserâ€ 5 cribed Graphene for Electrochemical Microsupercapacitors. Advanced Energy Materials, 2019, 9, 1900482.	19.5	142
85	Highly Monodisperse M ^{III} -Based soc -MOFs (M = In and Ga) with Cubic and Truncated Cubic Morphologies. Journal of the American Chemical Society, 2012, 134, 13176-13179.	13.7	138
86	Quest for Anionic MOF Membranes: Continuous sod -ZMOF Membrane with CO ₂ Adsorption-Driven Selectivity. Journal of the American Chemical Society, 2015, 137, 1754-1757.	13.7	138
87	Exceptional Stability and High Hydrogen Uptake in Hydrogen-Bonded Metalâ^'Organic Cubes Possessing ACO and AST Zeolite- <i>like</i> Topologies. Journal of the American Chemical Society, 2009, 131, 10394-10396.	13.7	136
88	A facile solvent-free synthesis route for the assembly of a highly CO ₂ selective and H ₂ S tolerant NiSIFSIX metal–organic framework. Chemical Communications, 2015, 51, 13595-13598.	4.1	134
89	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	13.7	133
90	Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. Journal of the American Chemical Society, 2019, 141, 9585-9592.	13.7	132

#	Article	IF	CITATIONS
91	Highly sensitive and selective SO ₂ MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. Journal of Materials Chemistry A, 2018, 6, 5550-5554.	10.3	131
92	CsPb ₂ Br ₅ Single Crystals: Synthesis and Characterization. ChemSusChem, 2017, 10, 3746-3749.	6.8	130
93	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	13.7	129
94	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw -MOFs. Chemical Science, 2015, 6, 4095-4102.	7.4	127
95	From Metalâ^'Organic Squares to Porous Zeolite-like Supramolecular Assemblies. Journal of the American Chemical Society, 2010, 132, 18038-18041.	13.7	126
96	Host–Guest Chirality Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its Double-Helix Polymer Guests. Journal of the American Chemical Society, 2016, 138, 786-789.	13.7	125
97	The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study. Sensors and Actuators B: Chemical, 2018, 257, 609-619.	7.8	123
98	Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study. Sensors, 2015, 15, 18153-18166.	3.8	120
99	Network Diversity through Decoration of Trigonalâ€Prismatic Nodes: Twoâ€Step Crystal Engineering of Cationic Metal–Organic Materials. Angewandte Chemie - International Edition, 2011, 50, 11421-11424.	13.8	118
100	A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas. CheM, 2019, 5, 950-963.	11.7	118
101	Nanosheets of Nonlayered Aluminum Metal–Organic Frameworks through a Surfactantâ€Assisted Method. Advanced Materials, 2018, 30, e1707234.	21.0	117
102	Conformation ontrolled Molecular Sieving Effects for Membraneâ€Based Propylene/Propane Separation. Advanced Materials, 2019, 31, e1807513.	21.0	117
103	On Demand: The Singular rht Net, an Ideal Blueprint for the Construction of a Metal–Organic Framework (MOF) Platform. Angewandte Chemie - International Edition, 2012, 51, 10099-10103.	13.8	116
104	Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nature Energy, 2021, 6, 882-891.	39.5	115
105	Tertiary Building Units:Â Synthesis, Structure, and Porosity of a Metalâ^'Organic Dendrimer Framework (MODF-1)⊥. Journal of the American Chemical Society, 2001, 123, 11482-11483.	13.7	113
106	Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 4155-4162.	8.0	113
107	Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chemical Communications, 2014, 50, 1937.	4.1	112
108	MXene Derived Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 20037-20042.	13.7	110

#	Article	IF	CITATIONS
109	Polyoxometalate–Cyclodextrin Metal–Organic Frameworks: From Tunable Structure to Customized Storage Functionality. Journal of the American Chemical Society, 2019, 141, 1847-1851.	13.7	110
110	Title is missing!. Chemical Communications, 2001, , 2534-2535.	4.1	109
111	The Quest for Modular Nanocages: tbo -MOF as an Archetype for Mutual Substitution, Functionalization, and Expansion of Quadrangular Pillar Building Blocks. Journal of the American Chemical Society, 2011, 133, 14204-14207.	13.7	109
112	High-Capacity NH ₄ ⁺ Charge Storage in Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 19178-19186.	13.7	109
113	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986.	8.0	109
114	Porous Germanates:Â Synthesis, Structure, and Inclusion Properties of Ge7O14.5F2·[(CH3)2NH2]3(H2O)0.86. Journal of the American Chemical Society, 1998, 120, 8567-8568.	13.7	108
115	Noninterpenetrating Indium Sulfide Supertetrahedral Cristobalite Framework. Journal of the American Chemical Society, 1999, 121, 6096-6097.	13.7	107
116	CO ₂ conversion: the potential of porous-organic polymers (POPs) for catalytic CO ₂ –epoxide insertion. Journal of Materials Chemistry A, 2016, 4, 7453-7460.	10.3	107
117	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	19.5	107
118	Postâ€Synthetic Modification of Porphyrinâ€Encapsulating Metal–Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO ₂ <i>/</i> CH ₄ Selectivity. Angewandte Chemie - International Edition, 2012, 51, 9330-9334.	13.8	106
119	A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO ₂ capture and hydrocarbon separation. Journal of Materials Chemistry A, 2015, 3, 6276-6281.	10.3	105
120	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	13.7	104
121	Achieving Superprotonic Conduction with a 2D Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 13156-13160.	13.7	103
122	The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces. Chemical Communications, 2013, 49, 10079.	4.1	101
123	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	13.7	101
124	Synthesis of Organic Photodimeric Cage Molecules Based on Cycloaddition via Metalâ^'Ligand Directed Assembly. Journal of the American Chemical Society, 2007, 129, 5820-5821.	13.7	99
125	Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: mesoporous silica foam as a first case study. Chemical Communications, 2012, 48, 11434.	4.1	98
126	Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt ₂ Ag ₂₃ Cl ₇ (PPh ₃) ₁₀] Nanoclusters. Journal of the American Chemical Society, 2017, 139, 1053-1056.	13.7	98

#	Article	IF	CITATIONS
127	Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chemical Engineering Journal, 2017, 324, 392-396.	12.7	98
128	An Open-Framework Germanate with Polycubane-Like Topology. Angewandte Chemie - International Edition, 1999, 38, 653-655.	13.8	94
129	Stepwise Transformation of the Molecular Building Blocks in a Porphyrin-Encapsulating Metal–Organic Material. Journal of the American Chemical Society, 2013, 135, 5982-5985.	13.7	94
130	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc -MOF platform for the operative removal of H ₂ S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	10.3	94
131	A Family of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagomé Lattice Sheets. Journal of the American Chemical Society, 2013, 135, 14016-14019.	13.7	93
132	The asc Trinodal Platform: Two‣tep Assembly of Triangular, Tetrahedral, and Trigonalâ€Prismatic Molecular Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 2902-2905.	13.8	88
133	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	21.0	88
134	Enhanced CO ₂ /CH ₄ Separation Performance of a Mixed Matrix Membrane Based on Tailored MOFâ€Polymer Formulations. Advanced Science, 2018, 5, 1800982.	11.2	88
135	2D Covalentâ€Organic Framework Electrodes for Supercapacitors and Rechargeable Metalâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2100177.	19.5	87
136	A Titanium Metal–Organic Framework with Visibleâ€Lightâ€Responsive Photocatalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 13468-13472.	13.8	84
137	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	11.7	83
138	Construction of Three Metalâ^'Organic Frameworks Based on Multifunctional T-Shaped Tripodal Ligands, H ₃ PyImDC. Crystal Growth and Design, 2010, 10, 3489-3495.	3.0	82
139	Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN3P ruthenium pincer complex under base-free Conditions. Journal of Organometallic Chemistry, 2012, 700, 202-206.	1.8	81
140	Trianglamine-Based Supramolecular Organic Framework with Permanent Intrinsic Porosity and Tunable Selectivity. Journal of the American Chemical Society, 2018, 140, 14571-14575.	13.7	78
141	Design and synthesis of metal-carboxylate frameworks with permanent microporosity. Topics in Catalysis, 1999, 9, 105-111.	2.8	77
142	Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I- structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation. Chemical Engineering Journal, 2019, 359, 32-36.	12.7	77
143	Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing. Chemistry of Materials, 2018, 30, 2719-2725.	6.7	76
144	A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective <i>p</i> â€Xylene Separation. Angewandte Chemie - International Edition, 2020, 59, 21367-21371.	13.8	76

#	Article	IF	CITATIONS
145	Realization of an Ultrasensitive and Highly Selective OFET NO ₂ Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin–MOF. ACS Applied Materials & Interfaces, 2020, 12, 18748-18760.	8.0	75
146	Understanding Hydrogen Sorption in a Metal–Organic Framework with Open-Metal Sites and Amide Functional Groups. Journal of Physical Chemistry C, 2013, 117, 9340-9354.	3.1	74
147	Highly Porous Ionic rht Metalâ~'Organic Framework for H2 and CO2 Storage and Separation: A Molecular Simulation Study. Langmuir, 2010, 26, 11196-11203.	3.5	72
148	Assembly of Two Metalâ^'Organic Frameworks with Intrinsic Chiral Topology from Achiral Materials. Crystal Growth and Design, 2010, 10, 492-494.	3.0	72
149	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	6.7	72
150	Perovskite-Nanosheet Sensitizer for Highly Efficient Organic X-ray Imaging Scintillator. ACS Energy Letters, 2022, 7, 10-16.	17.4	72
151	Microporous Heptazine Functionalized (3,24)-Connected rht -Metal–Organic Framework: Synthesis, Structure, and Gas Sorption Analysis. Crystal Growth and Design, 2014, 14, 414-418.	3.0	71
152	Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release. Journal of Materials Chemistry, 2011, 21, 9587.	6.7	70
153	Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing. ACS Applied Materials & Interfaces, 2018, 10, 11399-11405.	8.0	70
154	Topology meets MOF chemistry for pore-aperture fine tuning: ftw -MOF platform for energy-efficient separations <i>via</i> adsorption kinetics or molecular sieving. Chemical Communications, 2018, 54, 6404-6407.	4.1	65
155	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	13.7	65
156	Ge2ZrO6F2·(H2DAB)H2O:1 A 4-Connected Microporous Material with "Bow Tie―Building Units and an Exceptional Proportion of 3-Rings. Journal of the American Chemical Society, 2000, 122, 12409-12410.	13.7	64
157	Zeolite-like MOF nanocrystals incorporated 6FDA-polyimide mixed-matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2018, 565, 186-193.	8.2	64
158	Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chemical Communications, 2005, , 2095-2097.	4.1	63
159	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	11.7	62
160	Access to Highly Efficient Energy Transfer in Metal–Organic Frameworks via Mixed Linkers Approach. Journal of the American Chemical Society, 2020, 142, 8580-8584.	13.7	62
161	The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal–Organic Frameworks. Accounts of Chemical Research, 2021, 54, 3298-3312.	15.6	62
162	Structural diversity through ligand flexibility: two novel metal–organic nets via ligand-to-ligand cross-linking of "paddlewheels― Chemical Communications, 2010, 46, 8734.	4.1	60

#	Article	IF	CITATIONS
163	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	8.0	57
164	Adsorptive Molecular Sieving of Styrene over Ethylbenzene by Trianglimine Crystals. Journal of the American Chemical Society, 2021, 143, 4090-4094.	13.7	57
165	Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications, 2015, 51, 85-88.	4.1	54
166	Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films. Chemical Communications, 2017, 53, 6191-6194.	4.1	53
167	Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter, 2022, 5, 253-265.	10.0	53
168	Synthesis of highly monodispersed Ga- soc -MOF hollow cubes, colloidosomes and nanocomposites. Chemical Communications, 2016, 52, 9901-9904.	4.1	52
169	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	2.2	51
170	Nanoporous Fluorinated Metal–Organic Framework-Based Membranes for CO ₂ Capture. ACS Applied Nano Materials, 2020, 3, 6432-6439.	5.0	51
171	[Cu ₁₅ (PPh ₃) ₆ (PET) ₁₃] ²⁺ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839.	10.0	50
172	Single-metal-ion-based molecular building blocks (MBBs) approach to the design and synthesis of metal–organic assemblies. Journal of Molecular Structure, 2006, 796, 160-164.	3.6	48
173	Metalâ^'Organic Framework Diversity via Heterocoordination of a Multifunctional Ligand:  SrAl2 and a Novel (3,4)-Connected Network. Crystal Growth and Design, 2006, 6, 1453-1457.	3.0	46
174	Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection. Sensors, 2016, 16, 758.	3.8	46
175	Solvent-Controlled Assembly of Ionic Metal–Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties. Crystal Growth and Design, 2016, 16, 5554-5562.	3.0	46
176	Advances in Shaping of Metal–Organic Frameworks for CO ₂ Capture: Understanding the Effect of Rubbery and Glassy Polymeric Binders. Industrial & Engineering Chemistry Research, 2018, 57, 16897-16902.	3.7	46
177	Differential guest location by host dynamics enhances propylene/propane separation in a metal-organic framework. Nature Communications, 2020, 11, 6099.	12.8	44
178	Gaining Insights on the H ₂ –Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chemistry of Materials, 2016, 28, 7353-7361.	6.7	43
179	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. Langmuir, 2018, 34, 14546-14551.	3.5	43
180	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	13.7	42

#	Article	IF	CITATIONS
181	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	11.7	42
182	A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors. Sensors, 2018, 18, 3898.	3.8	41
183	Two-step crystal engineering of porous nets from [Cr3(μ3-O)(RCO2)6] and [Cu3(μ3-Cl)(RNH2)6Cl6] molecular building blocks. Chemical Communications, 2013, 49, 8154.	4.1	40
184	Investigating the Gas Sorption Mechanism in an <i>rht</i> -Metal–Organic Framework through Computational Studies. Journal of Physical Chemistry C, 2014, 118, 439-456.	3.1	40
185	Insight into the construction of metal–organic polyhedra: metal–organic cubes as a case study. Chemical Science, 2011, 2, 1695.	7.4	39
186	CO ₂ Adsorption in Mono-, Di- and Trivalent Cation-Exchanged Metal–Organic Frameworks: A Molecular Simulation Study. Langmuir, 2012, 28, 3903-3910.	3.5	39
187	A smart microelectromechanical sensor and switch triggered by gas. Applied Physics Letters, 2016, 109, ·	3.3	39
188	Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143.	4.6	39
189	Highly Selective Metal–Organic Framework Textile Humidity Sensor. ACS Applied Materials & Interfaces, 2020, 12, 29999-30006.	8.0	38
190	Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: application to methane purification and storage. RSC Advances, 2014, 4, 63855-63859.	3.6	37
191	Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials, 2020, 32, 97-104.	6.7	37
192	H ₂ S Sensors: Fumarateâ€Based fcuâ€MOF Thin Film Grown on a Capacitive Interdigitated Electrode. Angewandte Chemie, 2016, 128, 16111-16115.	2.0	35
193	Concurrent Sensing of CO ₂ and H ₂ O from Air Using Ultramicroporous Fluorinated Metal–Organic Frameworks: Effect of Transduction Mechanism on the Sensing Performance. ACS Applied Materials & Interfaces, 2019, 11, 1706-1712.	8.0	35
194	From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation. Chemical Communications, 2016, 52, 13897-13900.	4.1	34
195	Metal–organic frameworks for H ₂ and CH ₄ storage: insights on the pore geometry–sorption energetics relationship. IUCrJ, 2017, 4, 131-135.	2.2	33
196	Cocrystal controlled solid-state synthesis of a rigid tetracarboxylate ligand that pillars both square grid and Kagomé lattice layers. CrystEngComm, 2011, 13, 3130-3133.	2.6	32
197	Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discussions, 2017, 201, 127-143.	3.2	32
198	Insights into the Enhancement of MOF/Polymer Adhesion in Mixed-Matrix Membranes <i>via</i> Polymer Functionalization. ACS Applied Materials & Interfaces, 2021, 13, 29041-29047.	8.0	32

#	Article	IF	CITATIONS
199	Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chemical Communications, 2020, 56, 1883-1886.	4.1	31
200	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal–Organic Frameworks: Zr-sod-ZMOFs as a Case Study. Journal of the American Chemical Society, 2020, 142, 20547-20553.	13.7	31
201	Extension of Surface Organometallic Chemistry to Metal–Organic Frameworks: Development of a Well-Defined Single Site [(≡Zr–Oâ~")W(â•O)(CH ₂ ^{<i>t</i>} Bu) ₃] Olefir Metathesis Catalyst. Journal of the American Chemical Society, 2020, 142, 16690-16703.	13.7	31
202	Supramolecular Isomers of Metal–Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs. Crystal Growth and Design, 2016, 16, 722-727.	3.0	29
203	Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating. Journal of Microelectromechanical Systems, 2018, 27, 156-163.	2.5	29
204	A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework. Chemical Communications, 2014, 50, 14109-14112.	4.1	28
205	Tuning Gas Adsorption Properties of Zeolite-like Supramolecular Assemblies with gis Topology via Functionalization of Isoreticular Metal–Organic Squares. ACS Applied Materials & Interfaces, 2017, 9, 33521-33527.	8.0	27
206	Operando Elucidation on the Working State of Immobilized Fluorinated Iron Porphyrin for Selective Aqueous Electroreduction of CO ₂ to CO. ACS Catalysis, 2021, 11, 6499-6509.	11.2	27
207	Divalent Cation-Cyclodextrin Interactions at the Air-Water Interface. A Three-Stage Process. Langmuir, 1995, 11, 13-15.	3.5	25
208	Multimode excitation of a metal organics frameworks coated microbeam for smart gas sensing and actuation. Sensors and Actuators A: Physical, 2018, 283, 254-262.	4.1	24
209	Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413, 127388.	12.7	24
210	Understanding hydrogen sorption in a polar metal-organic framework with constricted channels. Journal of Chemical Physics, 2012, 136, 034705.	3.0	23
211	Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ana -topology. Chemical Communications, 2018, 54, 9414-9417.	4.1	23
212	Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. Journal of the American Chemical Society, 2022, 144, 6813-6820.	13.7	23
213	Cocrystal Controlled Solid-State Synthesis of a Thermally Stable Nicotinate Analogue That Sustains an Isostructural Series of Porous Metalâ~'Organic Materials. Crystal Growth and Design, 2009, 9, 5021-5023.	3.0	22
214	<i>In situ</i> assembled ZIF superstructures <i>via</i> an emulsion-free soft-templating approach. Chemical Science, 2020, 11, 11280-11284.	7.4	22
215	Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 2021, 627, 119201.	8.2	22
216	Optimizing Host–Guest Selectivity for Ethylbenzene Capture Toward Superior Styrene Purification. Chemistry of Materials, 2022, 34, 197-202.	6.7	20

#	Article	IF	CITATIONS
217	Molecular recognition and adsorptive separation of <i>m</i> -xylene by trianglimine crystals. Chemical Communications, 2021, 57, 9124-9127.	4.1	19
218	Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal–organic framework (ZMOF) with rho topology. CrystEngComm, 2015, 17, 290-294.	2.6	18
219	A unique 3D ultramicroporous triptycene-based polyimide framework for efficient gas sorption applications. RSC Advances, 2016, 6, 97560-97565.	3.6	18
220	Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous and Mesoporous Materials, 2019, 281, 44-49.	4.4	18
221	Quest for Zeoliteâ€like Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie - International Edition, 2020, 59, 19659-19662.	13.8	18
222	Fully Integrated Organic Fieldâ€Effect Transistor Platform to Detect and to Quantify NO ₂ Gas. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000086.	2.4	18
223	Fluorescent amino acids as reporter systems in peptido-cyclodextrin inclusion compounds. Journal of the Chemical Society Perkin Transactions II, 1996, , 1711.	0.9	17
224	Synthesis and Carbon Dioxide Sorption of Layered Double Hydroxide/Silica Foam Nanocomposites with Hierarchical Mesostructure. ChemSusChem, 2014, 7, 1035-1039.	6.8	17
225	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032.	2.0	17
226	[Ag ₉ (1,2-BDT) ₆] ^{3–} : How Square-Pyramidal Building Blocks Self-Assemble into the Smallest Silver Nanocluster. Inorganic Chemistry, 2021, 60, 4306-4312.	4.0	16
227	Electrochemical Thinâ€Film Transistors using Covalent Organic Framework Channel. Advanced Functional Materials, 2022, 32, .	14.9	16
228	Highly Efficient Rare-Earth-Based Metal–Organic Frameworks for Water Adsorption: A Molecular Modeling Approach. Journal of Physical Chemistry C, 2019, 123, 26989-26999.	3.1	15
229	A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective p â€Xylene Separation. Angewandte Chemie, 2020, 132, 21551-21555.	2.0	15
230	4,6-Connected fsb Topology Networks Obtained through Two-Step Crystal Engineering of Decorated Trigonal Prismatic Nodes. Crystal Growth and Design, 2014, 14, 2115-2117.	3.0	14
231	CO ₂ Capture Using the SIFSIX-2-Cu-i Metal–Organic Framework: A Computational Approach. Journal of Physical Chemistry C, 2017, 121, 27462-27472.	3.1	14
232	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	3.2	14
233	Tunable Twisting Motion of Organic Linkers via Concentration and Hydrogen-Bond Formation. Journal of Physical Chemistry C, 2019, 123, 5900-5906.	3.1	14
234	Revisiting the water sorption isotherm of MOF using electrical measurements. Chemical Communications, 2019, 55, 13251-13254.	4.1	14

#	Article	IF	CITATIONS
235	Periodic Nanostructures Based on Metal–Organic Frameworks (MOFs): En Route to Zeolite-Like Metal–Organic Frameworks (ZMOFs). , 0, , 251-274.		13
236	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	10.3	13
237	Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels. Engineering, 2022, 11, 80-86.	6.7	13
238	Steady state fluorescence studies of the complexes between pyrene and per-6-O-tert-butyldimethylsilyl α-, β- and γ-cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1996, , 955-959.	0.9	12
239	Crystal Engineering Using a "Turtlebug―Algorithm: A <i>de Novo</i> Approach to the Design of Binodal Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 3686-3693.	3.0	12
240	Supramolecular Selfâ€Assembly of Histidineâ€Cappedâ€Dialkoxyâ€Anthracene: A Visibleâ€Lightâ€Triggered Platf for Facile siRNA Delivery. Chemistry - A European Journal, 2016, 22, 13789-13793.	orm 3.3	12
241	Cyclodextrin-functionalized asymmetric block copolymer films as high-capacity reservoir for drug delivery. Journal of Membrane Science, 2019, 584, 1-8.	8.2	12
242	High-throughput screening of metal–organic frameworks for kinetic separation of propane and propene. Physical Chemistry Chemical Physics, 2020, 22, 23073-23082.	2.8	12
243	Zeolites embrace metal-organic frameworks: building block approach to the design and synthesis of zeolite-like metal-organic frameworks (ZMOFs). Studies in Surface Science and Catalysis, 2007, 170, 2021-2029.	1.5	11
244	A Convenient Preparation of 9H-Carbazole-3,6-dicarbonitrile and 9H-Carbazole-3,6-dicarboxylic Acid. Synthesis, 2014, 46, 596-599.	2.3	11
245	Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF. CrystEngComm, 2017, 19, 4265-4268.	2.6	11
246	The Growth of Photoactive Porphyrin-Based MOF Thin Films Using the Liquid-Phase Epitaxy Approach and their Optoelectronic Properties. Materials, 2019, 12, 2457.	2.9	11
247	High current density microkinetic and electronic structure analysis of CO2 reduction using Co and Fe complexes on gas diffusion electrode. Chem Catalysis, 2022, 2, 1143-1162.	6.1	11
248	Size almost doesn't matter. Nature Materials, 2007, 6, 718-719.	27.5	10
249	CO ₂ separation, capture and reuse: a web themed issue. Chemical Communications, 2015, 51, 5554-5555.	4.1	10
250	A nafion coated capacitive humidity sensor on a flexible PET substrate. , 2016, , .		10
251	Directional Exciton Migration in Benzoimidazole-Based Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 4917-4927.	4.6	10
252	Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer. New Journal of Chemistry, 2010, 34, 2392.	2.8	9

#	Article	IF	CITATIONS
253	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. Faraday Discussions, 2017, 201, 87-99.	3.2	9
254	Engineering MOF surface defects in mixed matrix membranes: An effective strategy to enhance MOF/polymer adhesion and control interfacial gas transport. , 2022, 2, 100029.		9
255	Solubilities of the cyclodextrins in the presence of transition metal salts. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1996, 26, 133-151.	1.6	8
256	Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids Confined in a Small-Pore Metal–Organic Framework. Journal of Physical Chemistry Letters, 2018, 9, 3014-3020.	4.6	8
257	Metal-Organic Frameworks Characterization via Inverse Pulse Gas Chromatography. Applied Sciences (Switzerland), 2021, 11, 10243.	2.5	8
258	Evaluating the High-Pressure Volumetric CH ₄ , H ₂ , and CO ₂ Storage Properties of Denser-Version Isostructural soc -Metal–Organic Frameworks. Journal of Chemical & Engineering Data, 2022, 67, 1732-1742.	1.9	8
259	Reticular Chemistry for the Construction of Highly Porous Aluminum-Based nia -Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10661-10666.	4.0	8
260	Toward Liquid Phase Processable Metal Organic Frameworks: Dream or Reality?. Accounts of Materials Research, 2021, 2, 1133-1140.	11.7	7
261	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	3.2	6
262	25 Jahre retikulÃ r e Chemie. Angewandte Chemie, 2021, 133, 24142.	2.0	6
263	Computationally Assisted Assessment of the Metalâ€Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer. Advanced Theory and Simulations, 2019, 2, 1900116.	2.8	5
264	Ultrafast Aggregation-Induced Tunable Emission Enhancement in a Benzothiadiazole-Based Fluorescent Metal–Organic Framework Linker. Journal of Physical Chemistry B, 2021, 125, 13298-13308.	2.6	5
265	Interface Engineering of Biâ€Fluorescence Molecules for Highâ€Performance Data Encryption and Ultralow UV‣ight Detection. Advanced Optical Materials, 2022, 10, .	7.3	5
266	Quest for Zeoliteâ€iike Supramolecular Assemblies: Selfâ€Assembly of Metal–Organic Squares via Directed Hydrogen Bonding. Angewandte Chemie, 2020, 132, 19827-19830.	2.0	4
267	Chiral Recognition by Molecular Monolayers: Inclusion of Terpenes in tert-Butyldimethylsilyl-O6-β-Cyclodextrin. Supramolecular Chemistry, 1997, 8, 177-180.	1.2	3
268	Coating of Conducting and Insulating Threads with Porous MOF Particles through Langmuir-Blodgett Technique. Nanomaterials, 2021, 11, 160.	4.1	3
269	A Career in Catalysis: Jean-Marie M. Basset. ACS Catalysis, 2022, 12, 4961-4977.	11.2	3
270	Simultaneous Sensing of Vapor Concentration and Temperature Utilizing Multimode of a MEMS		2

Resonator. , 2018, , .

#	Article	IF	CITATIONS
271	An Open-Framework Germanate with Polycubane-Like Topology. Angewandte Chemie - International Edition, 1999, 38, 653-655.	13.8	2
272	Rücktitelbild: H2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode (Angew. Chem. 51/2016). Angewandte Chemie, 2016, 128, 16162-16162.	2.0	1
273	Methane Storage in Metal-Organic Frameworks: Insights into the Storage Performance and the Intrinsic Property Relationships for Enhanced Adsorbed Natural Gas Storage. Series on Chemistry, Energy and the Environment, 2018, , 207-246.	0.3	1
274	Smart Gas Sensing and Actuation Using Multimode of a MOFs Coated Microbeam. , 2018, , .		1
275	Unusual design strategy for a stable and soluble high-molecular-weight copper(<scp>i</scp>) arylacetylide polymer. Chemical Communications, 2021, 57, 12004-12007.	4.1	1
276	Synthesised novel porous organic polymer may provide new technology for carbon capture. Membrane Technology, 2014, 2014, 9-10.	0.1	0
277	Nonlinear-Based Switch Triggered by Gas Using Electrostatically Actuated Microbeams. , 2016, , .		0
278	Sensitive resonant gas sensor operating in air with metal organic frameworks coating. , 2017, , .		0
279	Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating. , 2017, , .		0
280	Titelbild: A Polymorphic Azobenzene Cage for Energyâ€Efficient and Highly Selective <i>p</i> â€Xylene Separation (Angew. Chem. 48/2020). Angewandte Chemie, 2020, 132, 21433-21433.	2.0	0
281	Tailoring Cyclodextrins for the Construction of Large Scale Molecular Assemblies. , 1995, , 77-97.		0
282	Strategies for the design of functional MOFs: addressing energy-intensive separations. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C55-C55.	0.1	0