
Yu-Xia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8098588/publications.pdf

Version: 2024-02-01

<u>Υυ-ΥιλΙι</u>

#	Article	IF	CITATIONS
1	Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11, 3206.	12.8	105
2	Fabrication of microporous polymers for selective CO ₂ capture: the significant role of crosslinking and crosslinker length. Journal of Materials Chemistry A, 2017, 5, 23310-23318.	10.3	93
3	What Matters to the Adsorptive Desulfurization Performance of Metal - Organic Frameworks?. Journal of Physical Chemistry C, 2015, 119, 21969-21977.	3.1	91
4	Controlled Construction of Cu(I) Sites within Confined Spaces via Host–Guest Redox: Highly Efficient Adsorbents for Selective CO Adsorption. ACS Applied Materials & Interfaces, 2018, 10, 40044-40053.	8.0	51
5	Incorporation of Cu(<scp>ii</scp>) and its selective reduction to Cu(<scp>i</scp>) within confined spaces: efficient active sites for CO adsorption. Journal of Materials Chemistry A, 2018, 6, 8930-8939.	10.3	42
6	Low-temperature fabrication of Cu(<scp>i</scp>) sites in zeolites by using a vapor-induced reduction strategy. Journal of Materials Chemistry A, 2015, 3, 12247-12251.	10.3	40
7	Fabrication of highly dispersed nickel in nanoconfined spaces of as-made SBA-15 for dry reforming of methane with carbon dioxide. Chemical Engineering Journal, 2020, 390, 124491.	12.7	35
8	Rational Fabrication of Polyethylenimine-Linked Microbeads for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 250-258.	3.7	34
9	Controllable fabrication of cuprous sites in confined spaces for efficient adsorptive desulfurization. Fuel, 2020, 259, 116221.	6.4	23
10	Development of Adsorbents for Selective Carbon Capture: Role of Homo- and Cross-Coupling in Conjugated Microporous Polymers and Their Carbonized Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 17419-17426.	6.7	20
11	Fabrication of Cu+ sites in confined spaces for adsorptive desulfurization by series connection double-solvent strategy. Green Energy and Environment, 2022, 7, 345-351.	8.7	20
12	Rational Design and Fabrication of Nitrogen-Enriched and Hierarchical Porous Polymers Targeted for Selective Carbon Capture. Industrial & Engineering Chemistry Research, 2018, 57, 12926-12934.	3.7	19
13	Adjusting accommodation microenvironment for Cu ⁺ to enhance oxidation inhibition for thiophene capture. AICHE Journal, 2021, 67, e17368.	3.6	17
14	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	3.6	16
15	Stabilizing Cul in MIL-101(Cr) by introducing long-chain alkane for adsorptive desulfurization. Separation and Purification Technology, 2022, 290, 120892.	7.9	16
16	Fabrication of Cu(I)-Functionalized MIL-101(Cr) for Adsorptive Desulfurization: Low-Temperature Controllable Conversion of Cu(II) via Vapor-Induced Reduction. Inorganic Chemistry, 2019, 58, 11085-11090.	4.0	9
17	Facile Fabrication of Small-Sized Palladium Nanoparticles in Nanoconfined Spaces for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 19145-19152.	3.7	8
18	Construction of a superhydrophobic microenvironment <i>via</i> polystyrene coating: an unexpected way to stabilize Cu ^I against oxidation. Inorganic Chemistry Frontiers, 2021, 8, 5169-5177.	6.0	7

Yu-Xia Li

#	Article	IF	CITATIONS
19	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	10.4	7
20	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	4.3	6
21	Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry, 2021, 60, 6633-6640.	4.0	5
22	Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine. Chinese Journal of Chemical Engineering, 2023, 55, 41-48.	3.5	5
23	Development of High Yielded Sn-Doped Porous Carbons for Selective CO2 Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 10383-10392.	6.7	4