Kent F Mccue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8097732/publications.pdf

Version: 2024-02-01

394421 243625 2,542 47 19 44 citations h-index g-index papers 48 48 48 2412 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Temporally Selective Modification of the Tomato Rhizosphere and Root Microbiome by Volcanic Ash Fertilizer Containing Micronutrients. Applied and Environmental Microbiology, 2022, 88, e0004922.	3.1	4
2	Abiotic and biotic influences on the performance of two biological control agents, Neochetina bruchi and N. eichhorniae, in the Sacramento-San Joaquin River Delta, California (USA). Biological Control, 2021, 153, 104495.	3.0	3
3	Draft Genome Sequence of Agrobacterium fabrum Strain 1D1104. Microbiology Resource Announcements, 2021, 10, e0099621.	0.6	O
4	Transgene stacking in potato using the GAANTRY system. BMC Research Notes, 2019, 12, 457.	1.4	9
5	Draft Genome Sequence of Serratia sp. 1D1416. Microbiology Resource Announcements, 2019, 8, .	0.6	1
6	Complete Genome Sequence of $\mbox{\sc i}\mbox{\sc Agrobacterium fabrum}\mbox{\sc /i}\mbox{\sc Strain 1D159}.$ Microbiology Resource Announcements, 2019, 8, .	0.6	3
7	Into the weeds: Matching importation history to genetic consequences and pathways in two widely used biological control agents. Evolutionary Applications, 2019, 12, 773-790.	3.1	18
8	Draft Genome Sequence of Agrobacterium tume faciens Strain 1D1526. Microbiology Resource Announcements, 2019, 8, .	0.6	1
9	Modification of Potato Steroidal Glycoalkaloids with Silencing RNA Constructs. American Journal of Potato Research, 2018, 95, 9-14.	0.9	5
10	Mitigation of Acrylamide: a Multidisciplinary Approach to an Industry Problem. American Journal of Potato Research, 2018, 95, 338-339.	0.9	O
11	Accurate measurement of transgene copy number in crop plants using droplet digital <scp>PCR</scp> . Plant Journal, 2017, 90, 1014-1025.	5.7	87
12	Spatial and temporal variation of biological control agents associated with Eichhornia crassipes in the Sacramento-San Joaquin River Delta, California. Biological Control, 2017, 111, 13-22.	3.0	10
13	<i>Small Cyclic Amphipathic Peptides</i> (SCAmpPs) genes in citrus provide promising tools for more effective tissue specific transgenic expression. Acta Horticulturae, 2017, , 85-90.	0.2	O
14	Biological differences that distinguish the 2 major stages of wound healing in potato tubers. Plant Signaling and Behavior, 2016 , 11 , $e1256531$.	2.4	26
15	Impact of light-exposure on the metabolite balance of transgenic potato tubers with modified glycoalkaloid biosynthesis. Food Chemistry, 2016, 200, 263-273.	8.2	20
16	A family of small cyclic amphipathic peptides (SCAmpPs) genes in citrus. BMC Genomics, 2015, 16, 303.	2.8	12
17	Modifying glycoalkaloid content in transgenic potato – Metabolome impacts. Food Chemistry, 2015, 187, 437-443.	8.2	31
18	First Report of â€~ <i>Candidatus</i> Liberibacter solanacearum' on Pepper in Honduras. Plant Disease, 2014, 98, 154-154.	1.4	10

#	Article	IF	CITATIONS
19	First Report of â€~ <i>Candidatus</i> Liberibacter solanacearum' Infecting Eggplant in Honduras. Plant Disease, 2013, 97, 1654-1654.	1.4	20
20	First Report of " <i>Candidatus</i> Liberibacter solanacearum―Associated with Psyllid-Infested Tobacco in Nicaragua. Plant Disease, 2013, 97, 1244-1244.	1.4	19
21	First Report of " <i>Candidatus</i> Liberibacter solanacearum―on Tomato in El Salvador. Plant Disease, 2013, 97, 1245-1245.	1.4	13
22	First Report of " <i>Candidatus</i> Liberibacter solanacearum―on Tomato in Honduras. Plant Disease, 2013, 97, 1375-1375.	1.4	12
23	First Report of " <i>Candidatus</i> Liberibacter solanacearum―on Tobacco in Honduras. Plant Disease, 2013, 97, 1376-1376.	1.4	17
24	Compositional and toxicological analysis of a GM potato line with reduced α-solanine content – A 90-day feeding study in the Syrian Golden hamster. Regulatory Toxicology and Pharmacology, 2012, 64, 177-185.	2.7	18
25	Generation of PVY Coat Protein siRNAs in Transgenic Potatoes Resistant to PVY. American Journal of Potato Research, 2012, 89, 374-383.	0.9	11
26	Structure of Two Solanum tuberosum Steroidal Glycoalkaloid Glycosyltransferase Genes and Expression of their Promoters in Transgenic Potatoes. American Journal of Potato Research, 2011, 88, 485-492.	0.9	4
27	Gene Rpi-bt1 from Solanum bulbocastanum Confers Resistance to Late Blight in Transgenic Potatoes. American Journal of Potato Research, 2009, 86, 456-465.	0.9	51
28	Structure of Two Solanum bulbocastanum Polyubiquitin Genes and Expression of Their Promoters in Transgenic Potatoes. American Journal of Potato Research, 2008, 85, 219-226.	0.9	19
29	pBINPLUS/ARS: an improved plant transformation vector based on pBINPLUS. BioTechniques, 2008, 44, 753-756.	1.8	28
30	MANIPULATION AND COMPENSATION OF STEROIDAL GLYCOALKALOID BIOSYNTHESIS IN POTATOES. Acta Horticulturae, 2007, , 343-350.	0.2	5
31	Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry, 2007, 68, 327-334.	2.9	99
32	The primary in vivo steroidal alkaloid glucosyltransferase from potatoâ~†. Phytochemistry, 2006, 67, 1590-1597.	2.9	83
33	Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Science, 2005, 168, 267-273.	3.6	97
34	Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164, 873-881.	3.6	276
35	REDUCTION OF TOTAL STEROIDAL GLYCOALKALOIDS IN POTATO TUBERS USING ANTISENSE CONSTRUCTS OF A GENE ENCODING A SOLANIDINE GLUCOSYL TRANSFERASE. Acta Horticulturae, 2003, , 77-86.	0.2	16
36	Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions. Genome, 2002, 45, 367-380.	2.0	34

#	Article	IF	Citations
37	Transport of Metal-binding Peptides by HMT1, A Fission Yeast ABC-type Vacuolar Membrane Protein. Journal of Biological Chemistry, 1995, 270, 4721-4728.	3.4	405
38	Regulation of the Shikimate Pathway in Suspension Cultured Cells of Parsley (Petroselinum crispum) Tj ETQq0 0	0 rgBT /C	Overlock 10 Tf
39	Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193, 155-62.	3.2	125
40	Two Purine Biosynthetic Enzymes That Are Required for Cadmium Tolerance in Schizosaccharomyces pombe Utilize Cysteine Sulfinate in Vitro. Archives of Biochemistry and Biophysics, 1993, 304, 392-401.	3.0	56
41	Light and Fungal Elicitor Induce 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase mRNA in Suspension Cultured Cells of Parsley (Petroselinum crispum L.). Plant Physiology, 1992, 98, 761-763.	4.8	56
42	Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Molecular Biology, 1992, 18, 1-11.	3.9	173
43	Effect of Soil Salinity on the Expression of Betaine Aldehyde Dehydrogenase in Leaves: Investigation of Hydraulic, Ionic and Biochemical Signals Functional Plant Biology, 1992, 19, 555.	2.1	18
44	Drought and salt tolerance: towards understanding and application. Trends in Biotechnology, 1990, 8, 358-362.	9.3	404
45	Induction of Shikimic Acid Pathway Enzymes by Light in Suspension Cultured Cells of Parsley (Petroselinum crispum). Plant Physiology, 1990, 94, 507-510.	4.8	26
46	Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 1989, 178, 342-352.	3.2	146
47	Induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase activity by fungal elicitor in cultures of Petroselinum crispum Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7374-7377.	7.1	68