
Arnaud Monty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095968/publications.pdf Version: 2024-02-01

Δρηλίο Μοντγ

#	Article	IF	CITATIONS
1	Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions, 2021, 23, 1765-1779.	2.4	11
2	Monographs on invasive plants in Europe Nº 5: <i>Ambrosia trifida</i> L Botany Letters, 2021, 168, 167-190.	1.4	9
3	Shielded environments reduce stress in alien Asteraceae species during hot and dry summers along urbanâ€toâ€rural gradients. Ecology and Evolution, 2021, 11, 10613-10626.	1.9	4
4	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
5	The success of rock translocation for populations of the chasmophytic Aeollanthus saxatilis (Lamiaceae). Journal for Nature Conservation, 2020, 53, 125777.	1.8	0
6	Ecological niche distribution along soil toxicity gradients: Bridging theoretical expectations and metallophyte conservation. Ecological Modelling, 2020, 415, 108861.	2.5	3
7	A few north Appalachian populations are the source of European black locust. Ecology and Evolution, 2019, 9, 2398-2414.	1.9	11
8	Comparison of mining spoils to determine the best substrate for rehabilitating limestone quarries by favoring native grassland species over invasive plants. Ecological Engineering, 2019, 127, 510-518.	3.6	9
9	Naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries: towards habitats of conservation interest analogues?. Folia Geobotanica, 2018, 53, 147-158.	0.9	7
10	Towards a population approach for evaluating grassland restoration—a systematic review. Restoration Ecology, 2018, 26, 227-234.	2.9	10
11	Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions, 2018, 12, 787-797.	1.1	33
12	No evidence for genetic differentiation in juvenile traits between Belgian and French populations of the invasive tree Robinia pseudoacacia. Plant Ecology and Evolution, 2018, 151, 5-17.	0.7	6
13	Diaspore heteromorphism in the invasive Bromus tectorum L. (Poaceae): Sterile florets increase dispersal propensity and distance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 7-13.	1.2	6
14	Edaphic niches of metallophytes from southeastern Democratic Republic of Congo: Implications for post-mining restoration. Journal for Nature Conservation, 2016, 33, 18-24.	1.8	7
15	Dealing with paralogy in <scp>RAD</scp> seq data: in silico detection and single nucleotide polymorphism validation in <i>Robinia pseudoacacia</i> L Ecology and Evolution, 2016, 6, 7323-7333.	1.9	32
16	Effects of seed traits variation on seedling performance of the invasive weed, Ambrosia artemisiifolia L Acta Oecologica, 2016, 71, 39-46.	1.1	18
17	Performance variation of common ragweed (Ambrosia artemisiifolia L.) across invasion levels in Western Europe. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 220, 134-141.	1.2	7
18	Creating Perennial Flower Strips: Think Functional!. Agriculture and Agricultural Science Procedia, 2015, 6, 95-101.	0.6	16

2

Arnaud Monty

#	ARTICLE	IF	CITATIONS
19	Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats. Plant Ecology and Evolution, 2015, 148, 181-190.	0.7	5
20	Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding. Environmental Management, 2015, 55, 423-430.	2.7	2
21	Fire promotes downy brome (Bromus tectorum L.) seed dispersal. Biological Invasions, 2013, 15, 1113-1123.	2.4	26
22	Rapid Plant Invasion in Distinct Climates Involves Different Sources of Phenotypic Variation. PLoS ONE, 2013, 8, e55627.	2.5	30
23	Can Land Managers Control Japanese Knotweed? Lessons from Control Tests in Belgium. Environmental Management, 2012, 50, 1089-1097.	2.7	35
24	PERSPECTIVE: Linking concepts in the ecology and evolution of invasive plants: network analysis shows what has been most studied and identifies knowledge gaps. Evolutionary Applications, 2010, 3, 193-202.	3.1	11
25	Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae). Oikos, 2010, 119, 1563-1570.	2.7	56
26	Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landscape and Urban Planning, 2010, 98, 92-98.	7.5	23
27	Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia, 2009, 159, 305-315.	2.0	65
28	Individual distance-independent girth increment model for Douglas-fir in southern Belgium. Ecological Modelling, 2008, 212, 472-479.	2.5	8
29	Bimodal pollination system in rare endemic Oncocyclus irises (Iridaceae) of Lebanon. Canadian Journal of Botany, 2006, 84, 1327-1338.	1.1	28
30	Arboreta reveal the invasive potential of several conifer species in the temperate forests of western Europe. NeoBiota, 0, 64, 23-42.	1.0	10