Ron Naaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095809/publications.pdf

Version: 2024-02-01

214 papers

11,852 citations

59 h-index 101 g-index

224 all docs

224 docs citations

times ranked

224

6856 citing authors

#	Article	IF	CITATIONS
1	Theory of Chirality Induced Spin Selectivity: Progress and Challenges. Advanced Materials, 2022, 34, e2106629.	21.0	119
2	Temperature-Dependent Chiral-Induced Spin Selectivity Effect: Experiments and Theory. Journal of Physical Chemistry C, 2022, 126, 3257-3264.	3.1	50
3	Twisted molecular wires polarize spin currents at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
4	A Chirality-Based Quantum Leap. ACS Nano, 2022, 16, 4989-5035.	14.6	74
5	Chiral Induced Spin Selectivity and Its Implications for Biological Functions. Annual Review of Biophysics, 2022, 51, 99-114.	10.0	36
6	Mutual Monomer Orientation To Bias the Supramolecular Polymerization of [6]Helicenes and the Resulting Circularly Polarized Light and Spin Filtering Properties. Journal of the American Chemical Society, 2022, 144, 7709-7719.	13.7	53
7	Chirality enhances oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	20
8	Helicity Control in the Aggregation of Achiral Squaraine Dyes in Solution and Thin Films. Chemistry - A European Journal, 2021, 27, 298-306.	3.3	11
9	Spinâ€selective electron transmission through selfâ€assembled monolayers of doubleâ€stranded peptide nucleic acid. Chirality, 2021, 33, 93-102.	2.6	23
10	Substrates Modulate Charge-Reorganization Allosteric Effects in Protein–Protein Association. Journal of Physical Chemistry Letters, 2021, 12, 2805-2808.	4.6	12
11	Spin Filtering in Supramolecular Polymers Assembled from Achiral Monomers Mediated by Chiral Solvents. Journal of the American Chemical Society, 2021, 143, 7189-7195.	13.7	68
12	Simultaneous High-Purity Enantiomeric Resolution of Conglomerates Using Magnetic Substrates. Crystal Growth and Design, 2021, 21, 2925-2931.	3.0	12
13	The spin selectivity effect in chiral materials. APL Materials, 2021, 9, 040902.	5.1	88
14	Chiral spintronics. Nature Reviews Physics, 2021, 3, 328-343.	26.6	191
15	Temperature Dependence of Charge and Spin Transfer in Azurin. Journal of Physical Chemistry C, 2021, 125, 9875-9883.	3.1	26
16	Multistate Switching of Spin Selectivity in Electron Transport through Lightâ€Driven Molecular Motors. Advanced Science, 2021, 8, e2101773.	11.2	17
17	A Method for Separating Chiral Enantiomers by Enantiospecific Interaction with Ferromagnetic Substrates. Journal of Physical Chemistry C, 2021, 125, 17530-17536.	3.1	10
18	Evidence for new enantiospecific interaction force in chiral biomolecules. CheM, 2021, 7, 2787-2799.	11.7	17

#	Article	IF	Citations
19	Metal Organic Spin Transistor. Nano Letters, 2021, 21, 8657-8663.	9.1	12
20	The Electron Spin as a Chiral Reagent. Angewandte Chemie - International Edition, 2020, 59, 1653-1658.	13.8	65
21	The Electron Spin as a Chiral Reagent. Angewandte Chemie, 2020, 132, 1670-1675.	2.0	8
22	Spin-dependent charge transfer at chiral electrodes probed by magnetic resonance. Physical Chemistry Chemical Physics, 2020, 22, 997-1002.	2.8	12
23	Long-Range Spin-Selective Transport in Chiral Metal–Organic Crystals with Temperature-Activated Magnetization. ACS Nano, 2020, 14, 16624-16633.	14.6	51
24	Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry. Accounts of Chemical Research, 2020, 53, 2659-2667.	15.6	102
25	Asymmetric reactions induced by electron spin polarization. Physical Chemistry Chemical Physics, 2020, 22, 21570-21582.	2.8	40
26	Long-Range Charge Reorganization as an Allosteric Control Signal in Proteins. Journal of the American Chemical Society, 2020, 142, 20456-20462.	13.7	27
27	Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Letters, 2020, 20, 8675-8681.	9.1	30
28	Spin-Dependent Enantioselective Electropolymerization. Journal of Physical Chemistry C, 2020, 124, 20974-20980.	3.1	16
29	Electron Transfer via Helical Oligopeptide to Laccase Including Chiral Schiff Base Copper Mediators. Symmetry, 2020, 12, 808.	2.2	9
30	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	2.0	8
31	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	13.8	64
32	Effect of Chiral Molecules on the Electron's Spin Wavefunction at Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 1550-1557.	4.6	65
33	Comment on "Spin-dependent electron transmission model for chiral molecules in mesoscopic devices― Physical Review B, 2020, 101, .	3.2	18
34	Highly Efficient and Tunable Filtering of Electrons' Spin by Supramolecular Chirality of Nanofiberâ€Based Materials. Advanced Materials, 2020, 32, e1904965.	21.0	139
35	Length-Dependent Electron Spin Polarization in Oligopeptides and DNA. Journal of Physical Chemistry C, 2020, 124, 10776-10782.	3.1	90
36	Chiral Molecules and the Spin Selectivity Effect. Journal of Physical Chemistry Letters, 2020, 11, 3660-3666.	4.6	126

#	Article	IF	CITATIONS
37	Low-Resistance Molecular Wires Propagate Spin-Polarized Currents. Journal of the American Chemical Society, 2019, 141, 14707-14711.	13.7	33
38	Electric-Field-Enhanced Adsorption of Chiral Molecules on Ferromagnetic Substrates. Journal of Physical Chemistry B, 2019, 123, 9443-9448.	2.6	8
39	Spin-Dependent Electron Transport through Bacterial Cell Surface Multiheme Electron Conduits. Journal of the American Chemical Society, 2019, 141, 19198-19202.	13.7	67
40	Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. Applied Physics Letters, 2019, 115, .	3.3	25
41	Origin of Spin-Dependent Tunneling Through Chiral Molecules. Journal of Physical Chemistry C, 2019, 123, 17043-17048.	3.1	78
42	Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS Nano, 2019, 13, 4928-4946.	14.6	82
43	Voltage-induced long-range coherent electron transfer through organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5931-5936.	7.1	39
44	Chirality and its role in the electronic properties of peptides: spin filtering and spin polarization. Current Opinion in Electrochemistry, 2019, 14, 138-142.	4.8	7
45	Chiral molecules and the electron spin. Nature Reviews Chemistry, 2019, 3, 250-260.	30.2	462
46	Enantioseparation by crystallization using magnetic substrates. Chemical Science, 2019, 10, 5246-5250.	7.4	62
46 47	Enantioseparation by crystallization using magnetic substrates. Chemical Science, 2019, 10, 5246-5250. Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145.	7.4 4.6	62 33
	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules		
47	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral	4.6	33
47	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557. Nano Ferromagnetism: Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic	4.6	33
47 48 49	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557. Nano Ferromagnetism: Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules (Small 1/2019). Small, 2019, 15, 1970004. Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of	4.6 10.0 10.0	33 33 4
47 48 49 50	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557. Nano Ferromagnetism: Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules (Small 1/2019). Small, 2019, 15, 1970004. Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of Physical Chemistry C, 2019, 123, 3024-3031.	4.6 10.0 10.0 3.1	33 33 4 92
47 48 49 50	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. Journal of Physical Chemistry Letters, 2019, 10, 1139-1145. Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557. Nano Ferromagnetism: Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules (Small 1/2019). Small, 2019, 15, 1970004. Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of Physical Chemistry C, 2019, 123, 3024-3031. Effect of Oxidative Damage on Charge and Spin Transport in DNA. Journal of the American Chemical Society, 2019, 141, 123-126.	4.6 10.0 10.0 3.1	33 33 4 92 32

#	Article	IF	CITATIONS
55	Directing Charge Transfer in Quantum Dot Assemblies. Accounts of Chemical Research, 2018, 51, 2565-2573.	15.6	24
56	Enhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe ₃ O ₄ Nanoparticles. ACS Energy Letters, 2018, 3, 2308-2313.	17.4	103
57	Chirality and Spin: A Different Perspective on Enantioselective Interactions. Chimia, 2018, 72, 394.	0.6	18
58	Single Nanoparticle Magnetic Spin Memristor. Small, 2018, 14, e1801249.	10.0	70
59	Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science, 2018, 360, 1331-1334.	12.6	283
60	Spinâ€Dependent Processes Measured without a Permanent Magnet. Advanced Materials, 2018, 30, e1707390.	21.0	27
61	Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Physical Chemistry Chemical Physics, 2018, 20, 1091-1097.	2.8	37
62	Control of Electrons' Spin Eliminates Hydrogen Peroxide Formation During Water Splitting. Journal of the American Chemical Society, 2017, 139, 2794-2798.	13.7	225
63	Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2474-2478.	7.1	155
64	A new approach towards spintronics–spintronics with no magnets. Journal of Physics Condensed Matter, 2017, 29, 103002.	1.8	76
65	Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nature Communications, 2017, 8, 14567.	12.8	132
66	Structure dependent spin selectivity in electron transport through oligopeptides. Journal of Chemical Physics, 2017, 146, .	3.0	69
67	Application of a GaAs-Based Sensor for Detecting Hemoglobin in Gastrointestinal Environments. IEEE Sensors Journal, 2017, 17, 660-666.	4.7	11
68	Charge and spin transport through nucleic acids. Current Opinion in Electrochemistry, 2017, 4, 175-181.	4.8	18
69	Magnetless Device for Conducting Threeâ€Dimensional Spinâ€Specific Electrochemistry. Angewandte Chemie, 2017, 129, 14779-14782.	2.0	10
70	Magnetless Device for Conducting Threeâ€Dimensional Spinâ€Specific Electrochemistry. Angewandte Chemie - International Edition, 2017, 56, 14587-14590.	13.8	34
71	High Circular Polarization of Electroluminescence Achieved <i>via</i> Self-Assembly of a Light-Emitting Chiral Conjugated Polymer into Multidomain Cholesteric Films. ACS Nano, 2017, 11, 12713-12722.	14.6	197
72	Enhanced Hydrogen Production with Chiral Conductive Polymer-Based Electrodes. Journal of Physical Chemistry C, 2017, 121, 15777-15783.	3.1	40

#	Article	IF	CITATIONS
73	Enhanced Hydrogen Production With Chiral Conductive Polymer-Based Electrodes. Journal of Physical Chemistry A, 2017, , .	2.5	2
74	Sensing Cellular Metabolic Activity via a Molecular-Controlled Semiconductor Resistor. ACS Omega, 2017, 2, 8550-8556.	3.5	2
75	Spin in Quantum Biology. Inference, 2017, 3, .	0.0	0
76	Helicenesâ€"A New Class of Organic Spin Filter. Advanced Materials, 2016, 28, 1957-1962.	21.0	319
77	Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers. Nature Communications, 2016, 7, 10744.	12.8	83
78	Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures. Nano Letters, 2016, 16, 2806-2811.	9.1	52
79	Spin-Controlled Photoluminescence in Hybrid Nanoparticles Purple Membrane System. ACS Nano, 2016, 10, 4525-4531.	14.6	20
80	The electron's spin and molecular chirality – how are they related and how do they affect life processes?. Chemical Society Reviews, 2016, 45, 6478-6487.	38.1	194
81	Chirality – Beyond the Structural Effects. Israel Journal of Chemistry, 2016, 56, 1010-1015.	2.3	9
82	Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry. Accounts of Chemical Research, 2016, 49, 2560-2568.	15.6	129
83	Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots. Nano Letters, 2016, 16, 4583-4589.	9.1	99
84	Hybrid Sensor Based on AlGaN/GaN Molecular Controlled Device. ACS Sensors, 2016, 1, 185-189.	7.8	11
85	Conductive Polymers: Chiral Conductive Polymers as Spin Filters (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1968-1968.	21.0	0
86	Chiral Selective Chemistry Induced by Natural Selection of Spinâ€Polarized Electrons. Angewandte Chemie - International Edition, 2015, 54, 7295-7298.	13.8	58
87	Spin Filtering in Electron Transport Through Chiral Oligopeptides. Journal of Physical Chemistry C, 2015, 119, 14542-14547.	3.1	171
88	Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annual Review of Physical Chemistry, 2015, 66, 263-281.	10.8	374
89	Light-Controlled Spin Filtering in Bacteriorhodopsin. Nano Letters, 2015, 15, 1052-1056.	9.1	40
90	Chiral Conductive Polymers as Spin Filters. Advanced Materials, 2015, 27, 1924-1927.	21.0	121

#	Article	lF	CITATIONS
91	New One-Step Thiol Functionalization Procedure for Ni by Self-Assembled Monolayers. Langmuir, 2015, 31, 3546-3552.	3.5	42
92	Evidence for Enhanced Electron Transfer by Multiple Contacts between Self-Assembled Organic Monolayers and Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 15839-15845.	3.1	7
93	Sensing of molecules using quantum dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2419-28.	7.1	14
94	Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry. ACS Nano, 2015, 9, 3377-3384.	14.6	85
95	Role of the Electron Spin Polarization in Water Splitting. Journal of Physical Chemistry Letters, 2015, 6, 4916-4922.	4.6	147
96	The Molecular Controlled Semiconductor Resistor: A Universal Sensory Technology. Israel Journal of Chemistry, 2014, 54, 586-594.	2.3	5
97	Non-magnetic organic/inorganic spin injector at room temperature. Applied Physics Letters, 2014, 105, .	3.3	78
98	Spin Selectivity in Electron Transfer in Photosystem I. Angewandte Chemie - International Edition, 2014, 53, 8953-8958.	13.8	73
99	The relationship between interfacial bonding and radiation damage in adsorbed DNA. Physical Chemistry Chemical Physics, 2014, 16, 15319-15325.	2.8	19
100	Hybrid Organicâ€Inorganic Biosensor for Ammonia Operating under Harsh Physiological Conditions. Advanced Functional Materials, 2014, 24, 5833-5840.	14.9	11
101	Electric-Field-Driven Alignment of Chiral Conductive Polymer Thin Films. Langmuir, 2014, 30, 4838-4843.	3.5	14
102	Kinetic Energy Dependence of Spin Filtering of Electrons Transmitted through Organized Layers of DNA. Journal of Physical Chemistry C, 2013, 117, 22307-22313.	3.1	21
103	A chiral-based magnetic memory device without a permanent magnet. Nature Communications, 2013, 4, 2256.	12.8	151
104	A device for measuring spin selectivity in electron transfer. Physical Chemistry Chemical Physics, 2013, 15, 18357.	2.8	48
105	The Capture of Low-Energy Electrons by PNA versus DNA. Journal of Physical Chemistry Letters, 2013, 4, 3298-3302.	4.6	8
106	A highly sensitive hybrid organic–inorganic sensor for continuous monitoring of hemoglobin. Biosensors and Bioelectronics, 2013, 45, 201-205.	10.1	27
107	Surprising Molecular Length Dependence in Conduction through a Hybrid Organic–Inorganic System. Journal of Physical Chemistry Letters, 2013, 4, 2041-2045.	4.6	2
108	Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14872-14876.	7.1	193

#	Article	IF	Citations
109	Enabling Long-Term Operation of GaAs-Based Sensors. Engineering, 2013, 05, 1-12.	0.8	9
110	Increased Superconducting Transition Temperature of a Niobium Thin Film Proximity Coupled to Gold Nanoparticles Using Linking Organic Molecules. Physical Review Letters, 2012, 108, 107004.	7.8	19
111	Publisher's Note: Spin-selective transport through helical molecular systems [Phys. Rev. B 85 , 081404(R) (2012)]. Physical Review B, 2012, 85, .	3.2	8
112	Detection and Quantification through a Lipid Membrane Using the Molecularly Controlled Semiconductor Resistor. Langmuir, 2012, 28, 1020-1028.	3.5	12
113	Determination of the Electronic Energetics of CdTe Nanoparticle Assemblies on Au Electrodes by Photoemission, Electrochemical, and Photocurrent Studies. Journal of Physical Chemistry C, 2012, 116, 17464-17472.	3.1	27
114	Quantitative Analysis and Characterization of Self-Assembled DNA on a Silver Surface. Langmuir, 2012, 28, 14514-14517.	3.5	16
115	Chiral-Induced Spin Selectivity Effect. Journal of Physical Chemistry Letters, 2012, 3, 2178-2187.	4.6	427
116	Spin-selective transport through helical molecular systems. Physical Review B, 2012, 85, .	3.2	194
117	Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles. Beilstein Journal of Nanotechnology, 2012, 3, 629-636.	2.8	7
118	Control of Quantum Dynamical Processes. Israel Journal of Chemistry, 2012, 52, 383-383.	2.3	0
119	Role of Backbone Charge Rearrangement in the Bond-Dipole and Work Function of Molecular Monolayers. Journal of Physical Chemistry C, 2011, 115, 24888-24892.	3.1	31
120	Sensitive Detection and Identification of DNA and RNA Using a Patterned Capillary Tube. Analytical Chemistry, 2011, 83, 9418-9423.	6.5	6
121	How Isolated Are the Electronic States of the Core in Core/Shell Nanoparticles?. ACS Nano, 2011, 5, 863-869.	14.6	16
122	Spin Specific Electron Conduction through DNA Oligomers. Nano Letters, 2011, 11, 4652-4655.	9.1	323
123	Energetics of CdSe Quantum Dots Adsorbed on TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 13236-13241.	3.1	32
124	Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 2011, 331, 894-897.	12.6	615
125	Molecular controlled nano-devices. Physical Chemistry Chemical Physics, 2011, 13, 13153.	2.8	21
126	Magnetolithography. Advances in Imaging and Electron Physics, 2010, 164, 1-27.	0.2	3

#	Article	IF	Citations
127	Effect of the surface on the electronic properties of a two-dimensional electron gas as measured by the quantum Hall effect. Physical Review B, 2010, 81, .	3.2	7
128	Cooperative Electronic and Magnetic Properties of Self-Assembled Monolayers. MRS Bulletin, 2010, 35, 429-434.	3.5	21
129	Spin Selective Electron Transmission Through Monolayers of Chiral Molecules. Topics in Current Chemistry, 2010, 298, 237-257.	4.0	7
130	Temperature-Dependent Coupling in Hybrid Structures of Nanoparticle Layers Linked by Organic Molecules. Journal of Physical Chemistry Letters, 2010, 1, 594-598.	4.6	5
131	Packed DNA Denatures on Gold Nanoparticles. Journal of Physical Chemistry B, 2010, 114, 8581-8584.	2.6	15
132	Cooperative Effect in the Electronic Properties of Human Telomere Sequence. Journal of Physical Chemistry B, 2010, 114, 13897-13903.	2.6	20
133	Collective Effects in Charge Transfer within a Hybrid Organic-Inorganic System. Physical Review Letters, 2010, 104, 016804.	7.8	10
134	Patterning Gradient Properties from Sub-Micrometers to Millimeters by Magnetolithography. Nano Letters, 2010, 10, 2262-2267.	9.1	23
135	Three-Dimensional Surface Patterning by DNA-Modifying Enzymes. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2320-2324.	8.0	4
136	Controlling two-photon photoemission using polarization pulse shaping. Journal of Chemical Physics, 2009, 130, 064705.	3.0	10
137	The Origin of the Magnetism of Etched Silicon. Advanced Materials, 2009, 21, 71-74.	21.0	50
138	Magnetolithography: From Bottomâ€Up Route to High Throughput. Small, 2009, 5, 316-319.	10.0	20
139	Chiral imprinting of palladium with cinchona alkaloids. Nature Chemistry, 2009, 1, 160-164.	13.6	94
140	Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions. Sensors and Actuators B: Chemical, 2009, 140, 122-127.	7.8	41
141	Self-Assembly of Nanoparticle Arrays on Semiconductor Substrate for Charge Transfer Cascade. Journal of Physical Chemistry A, 2009, 113, 7213-7217.	2.5	12
142	Electronic Structure of CdSe Nanoparticles Adsorbed on Au Electrodes by an Organic Linker: Fermi Level Pinning of the HOMO. Journal of Physical Chemistry C, 2009, 113, 14200-14206.	3.1	42
143	The Molecularly Controlled Semiconductor Resistor: How does it work?. ACS Applied Materials & Amp; Interfaces, 2009, 1, 2679-2683.	8.0	20
144	Electronic Structure of DNA - Unique Properties of 8-Oxoguanosine. Journal of the American Chemical Society, 2009, 131, 89-95.	13.7	24

#	Article	IF	Citations
145	Submicrometer Chemical Patterning with High Throughput Using Magnetolithography. Langmuir, 2009, 25, 5451-5454.	3.5	8
146	Magnetolithographic Patterning of Inner Walls of a Tube: A New Dimension in Microfluidics and Sequential Microreactors. Journal of the American Chemical Society, 2009, 131, 18260-18262.	13.7	20
147	Controlling the anisotropic magnetic dipolar interactions of PbSe self-assembled nanoparticles on GaAs. Physical Chemistry Chemical Physics, 2009, 11, 7549.	2.8	6
148	Adsorptionâ€Induced Magnetization of PbS Selfâ€Assembled Nanoparticles on GaAs. Advanced Materials, 2008, 20, 2552-2555.	21.0	11
149	Chiral Control of Electron Transmission through Molecules. Physical Review Letters, 2008, 101, 238103.	7.8	49
150	Selective Surface Patterning for the Coadsorption of Self-Assembled Gold and Semiconductor Nanoparticles. Langmuir, 2008, 24, 5981-5983.	3.5	15
151	Selective Enzymatic Labeling To Detect Packing-Induced Denaturation of Double-Stranded DNA at Interfaces. Langmuir, 2008, 24, 11842-11846.	3.5	10
152	Enhancement of Reaction Specificity at Interfaces. Journal of Physical Chemistry B, 2008, 112, 3948-3954.	2.6	2
153	Controlling the Reactivity of Adsorbed DNA on Template Surfaces. Langmuir, 2008, 24, 927-931.	3.5	12
154	Interaction of Self-Assembled Monolayers of DNA with Electrons: HREELS and XPS Studies. Journal of Physical Chemistry B, 2008, 112, 6957-6964.	2.6	79
155	Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets. Nano Letters, 2008, 8, 1241-1245.	9.1	114
156	Molecular controlled semiconductor devices., 2008,,.		0
157	Hybrid nanocrystals-organic-semiconductor light sensor. Applied Physics Letters, 2008, 92, .	3.3	34
158	Nano phototubes-A new approach towards electronics. , 2008, , .		0
159	Integrated circuits based on nanoscale vacuum phototubes. Applied Physics Letters, 2008, 92, 262903.	3.3	15
160	Low-Energy Electron Transmission through Thin-Film Molecular and Biomolecular Solids. Chemical Reviews, 2007, 107, 1553-1579.	47.7	64
161	Electron capturing by DNA. Israel Journal of Chemistry, 2007, 47, 149-159.	2.3	12
162	Chirality Induction in Bulk Gold and Silver. Advanced Materials, 2007, 19, 1207-1211.	21.0	63

#	Article	IF	Citations
163	New Magnetic Properties of Silicon/Silicon Oxide Interfaces. Advanced Materials, 2007, 19, 925-928.	21.0	52
164	Interface Magnetism., 2007,,.		0
165	Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. Journal of Physical Chemistry B, 2006, 110, 1301-1308.	2.6	58
166	Molecular enhancement of ferromagnetism in GaAsâ^GaMnAs heterostructures. Applied Physics Letters, 2006, 89, 112508.	3.3	15
167	Uncooled Infrared Detector Using a Thin InAsSb Layer Acting as a Gate on a GaAs Field-Effect Transistor. IEEE Sensors Journal, 2006, 6, 1195-1199.	4.7	8
168	New electronic and magnetic properties emerging from adsorption of organized organic layers. Physical Chemistry Chemical Physics, 2006, 8, 2217.	2.8	32
169	The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Physical Chemistry Chemical Physics, 2006, 8, 63-67.	2.8	134
170	Sequence Dependence of Charge Transport Properties of DNA. Journal of Physical Chemistry B, 2006, 110, 8910-8913.	2.6	63
171	Development of nitric oxide sensor for asthma attack prevention. Materials Science and Engineering C, 2006, 26, 253-259.	7.3	43
172	Vager and Naaman Reply:. Physical Review Letters, 2006, 96, .	7.8	2
173	The Cooperative Molecular Field Effect. Advanced Functional Materials, 2005, 15, 1571-1578.	14.9	164
174	Characterization of wet-etched GaAs (100) surfaces. Surface and Interface Analysis, 2005, 37, 673-682.	1.8	87
175	Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy. Physical Chemistry Chemical Physics, 2004, 6, 4459.	2.8	59
176	Cooperative effect in electron transfer between metal substrate and organized organic layers. Chemical Physics Letters, 2003, 381, 650-653.	2.6	44
177	Controlling the Adsorption and Reactivity of DNA on Gold. Langmuir, 2003, 19, 10573-10580.	3.5	69
178	Magnetism induced by the organization of self-assembled monolayers. Journal of Chemical Physics, 2003, 118, 10372-10375.	3.0	153
179	New electronic and magnetic properties of monolayers of thiols on gold. Israel Journal of Chemistry, 2003, 43, 399-405.	2.3	11
180	Adsorption of Organic Phosphate as a Means To Bind Biological Molecules to GaAs Surfaces. Langmuir, 2003, 19, 7392-7398.	3.5	26

#	Article	IF	Citations
181	Alternation between modes of electron transmission through organized organic layers. Physical Review B, 2003, 68, .	3.2	16
182	Electron Transmission through Organized Organic Thin Films. Accounts of Chemical Research, 2003, 36, 291-299.	15.6	29
183	Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes. Nano Letters, 2003, 3, 153-155.	9.1	158
184	Magnetization of Chiral Monolayers of Polypeptide: A Possible Source of Magnetism in Some Biological Membranes We are grateful to Prof. M. Fridkin and his group for helping us in the synthesis of the polyalanine. Partial support from the US–Israel Binational Science Foundation is acknowledged Angewandte Chemie - International Edition, 2002, 41, 761.	13.8	63
185	Adsorption of Polar Molecules on a Molecular Surface. Journal of Physical Chemistry B, 2001, 105, 2881-2884.	2.6	31
186	Photoelectron Transmission Through "Cascade-Like―Langmuir-Blodgett Films Containing CdS Quantum Particles. Advanced Materials, 2001, 13, 584-587.	21.0	8
187	Microwave modulation of exciton emission in molecular controlled semiconductor resistor. Journal of Chemical Physics, 2001, 115, 3834-3839.	3.0	0
188	Temperature dependence of electron transmission through organized organic thin films. Journal of Chemical Physics, 2000, 113, 7571-7577.	3.0	6
189	Assemblies of CdS Quantum Particles Studied by the Attenuated Low Energy Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 8631-8634.	2.6	13
190	Wavelength- and Time-Dependent Two-Photon Photoemission Spectroscopy of Dye-Coated Silicon Surface. Journal of Physical Chemistry B, 2000, 104, 11248-11252.	2.6	3
191	MOLECULAR CONTROLLED SEMICONDUCTOR RESISTOR AS A SENSOR FOR METAL IONS. , 2000, , .		0
192	The reaction of O(1D) with H2O, D2O monomers and clusters and the intracomplex reaction in N2O–X2O (X=H,D) photo-initiated at 193 and 212.8 nm. Journal of Chemical Physics, 1999, 111, 4025-4031.	3.0	7
193	Focusing of DCl and HCl dimers by an electrostatic hexapole field: The role of the tunneling motion. Journal of Chemical Physics, 1999, 110, 355-358.	3.0	18
194	Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science, 1999, 283, 814-816.	12.6	311
195	Electron transmission through organized organic thin films studied by discrete initial electron kinetic energies. European Physical Journal B, 1999, 8, 445-451.	1.5	10
196	Molecular control of a GaAs transistor. Chemical Physics Letters, 1998, 283, 301-306.	2.6	60
197	Real-Time Electronic Monitoring of Adsorption Kinetics:Â Evidence for Two-Site Adsorption Mechanism of Dicarboxylic Acids on GaAs(100). Journal of Physical Chemistry B, 1998, 102, 3307-3309.	2.6	53
198	Reactions of oxygen atoms with van der Waals complexes: The effect of complex formation on the internal energy distribution in the products. Journal of Chemical Physics, 1998, 108, 9651-9657.	3.0	15

#	Article	IF	CITATIONS
199	The role of three dimensional structure in electron transmission through thin organic layers. Journal of Chemical Physics, 1997, 107, 1288-1290.	3.0	18
200	Effect of the Substrate Morphology on the Structure of Adsorbed Ice. Journal of Physical Chemistry B, 1997, 101, 5172-5176.	2.6	29
201	Electron Transmission Through Thin Organized Organic Films. Surface and Interface Analysis, 1997, 25, 71-75.	1.8	10
202	Production of OH by dissociating ozone–water complexes at 266 and 355 nm and by reacting O(1D) with water dimers. Journal of Chemical Physics, 1995, 102, 1941-1943.	3.0	26
203	Spectroscopy and Photoreactivity in Complex Environments. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 371-377.	0.9	28
204	Reactions of oxygen atoms with hydrocarbon clustersâ€"the solvent effect. AIP Conference Proceedings, 1994, , .	0.4	0
205	The Reactions of O(¹ D) with Propane and Water Monomers and Clusters. Israel Journal of Chemistry, 1994, 34, 59-66.	2.3	15
206	Observation of laser excitation of rhombic C4 using the coulomb explosion method. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 340-342.	1.0	10
207	The isomers of small carbon clusters. Zeitschrift FÃ $^1\!\!/\!\!4$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 343-345.	1.0	3
208	The reaction of O(3P) with cyclohexane clusters. Journal of Chemical Physics, 1993, 98, 2936-2940.	3.0	25
209	The reactions of $O(1D)$ with CH4and C3H8monomers and clusters. Journal of Chemical Physics, 1993, 99, 4500-4508.	3.0	60
210	Energy distribution in HCl(v=1) following the vibrational predissociation of C2H2–HCl complex. Journal of Chemical Physics, 1992, 96, 8616-8617.	3.0	22
211	Rotational relaxation in a free expansion of HCl. Journal of Chemical Physics, 1992, 96, 4423-4428.	3.0	8
212	The structure of small carbon clusters. Zeitschrift FÃ $^1\!\!/4$ r Physik D-Atoms Molecules and Clusters, 1991, 19, 413-418.	1.0	18
213	The structure of small carbon clusters. Radiation Effects and Defects in Solids, 1991, 117, 33-42.	1.2	3
214	Energy distribution in aniline scattered from various low energy surfaces. Journal of Chemical Physics, 1991, 94, 4921-4927.	3.0	14