Shanthakumar S

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8095758/publications.pdf

Version: 2024-02-01

		394421	315739
58	1,596	19	38
papers	citations	h-index	g-index
59	59	59	1873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater $\hat{a} \in A$ review. Journal of Environmental Management, 2022, 302, 113998.	7.8	24
2	Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella vulgaris. Bioengineering, 2022, 9, 134.	3.5	17
3	Algalization of Acid Soils with <i>Desmodesmus</i> sp. MAS1 and <i>Heterochlorella</i> sp. MAS3 Enriches Bacteria of Ecological Importance. ACS Agricultural Science and Technology, 2022, 2, 512-520.	2.3	7
4	Zero Liquid Discharge System for the Tannery Industryâ€"An Overview of Sustainable Approaches. Recycling, 2022, 7, 31.	5 . O	11
5	Production of Biodiesel from Soybean Oil in Less Time and at Low Temperature. Asian Journal of Chemistry, 2022, 34, 2173-2177.	0.3	О
6	Algalization of acid soils with acidâ€tolerant strains: Improvement in pH , carbon content, exopolysaccharides, indole acetic acid and dehydrogenase activity. Land Degradation and Development, 2021, 32, 3157-3166.	3.9	7
7	Paddyâ€soaked rice mill wastewater treatment by phycoremediation and feasibility study on use of algal biomass as biofertilizer. Journal of Chemical Technology and Biotechnology, 2021, 96, 394-403.	3.2	18
8	Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Applied Sciences (Switzerland), 2021, 11, 4134.	2.5	65
9	Insights into the influence of CO2 supplement on phycoremediation and lipid accumulation potential of microalgae: An exploration for biodiesel production. Environmental Technology and Innovation, 2021, 23, 101596.	6.1	11
10	Sustainable Treatments for Wastewater Deriving from the Coffee Processing., 2021,, 237-244.		O
11	Phycoremediation: An Integrated and Eco-friendly Approach for Wastewater Treatment and Value-Added Product Potential. , 2020, , 305-331.		1
12	Fixed bed column study for pesticide removal using silver nanoparticles-embedded polyurethane foam and glass beads. Chemical Engineering Communications, 2020, 207, 1337-1346.	2.6	8
13	Optimization of Temperature and Inoculum Size for Phycoremediation of Paddy-Soaked Rice Mill Wastewater. Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	3
14	Remediation of Lead and Nickel Contaminated Soil Using Nanoscale Zero-Valent Iron (nZVI) Particles Synthesized Using Green Leaves: First Results. Processes, 2020, 8, 1453.	2.8	11
15	Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential. Journal of Environmental Management, 2020, 273, 111129.	7.8	21
16	Outdoor cultivation of Chlorella pyrenoidosa in paddy-soaked wastewater and a feasibility study on biodiesel production from wet algal biomass through in-situ transesterification. Biomass and Bioenergy, 2020, 143, 105853.	5.7	19
17	Biodegradable and non-biodegradable fraction of municipal solid waste for multifaceted applications through a closed loop integrated refinery platform: Paving a path towards circular economy. Science of the Total Environment, 2020, 731, 138049.	8.0	78
18	UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst. Environments - MDPI, 2020, 7, 47.	3.3	44

#	Article	IF	CITATIONS
19	A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment. Chemical Engineering Research and Design, 2020, 143, 212-221.	5.6	22
20	An integrated approach for tannery effluent treatment with ozonation and phycoremediation: A feasibility study. Environmental Research, 2020, 183, 109163.	7.5	47
21	Distribution of Metal Contamination and Risk Indices Assessment of Surface Sediments from Cooum River, Chennai, India. International Journal of Environmental Research, 2019, 13, 853-860.	2.3	18
22	Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 2019, 246, 51-62.	7.8	243
23	Phycoremediation of paddy-soaked wastewater by indigenous microalgae in open and closed culture system. Journal of Environmental Management, 2019, 243, 435-443.	7.8	18
24	Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential. Journal of Environmental Management, 2019, 241, 167-178.	7.8	45
25	Opportunities for phycoremediation approach in tannery effluent: A treatment perspective. Environmental Progress and Sustainable Energy, 2019, 38, e13078.	2.3	7
26	Phytoremediation of nutrient overloaded soil by rice mill wastewater using <i>Amaranthus palmeri</i> and <i>Sorghum vulgare</i> Environmental Progress and Sustainable Energy, 2019, 38, 354-361.	2.3	2
27	Ni ²⁺ and Co ²⁺ adsorption using <i>Tectona grandis</i> biochar: kinetics, equilibrium and desorption studies. Environmental Technology (United Kingdom), 2018, 39, 464-478.	2,2	27
28	Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder. Journal of the Institution of Engineers (India): Series A, 2018, 99, 103-111.	1.2	7
29	Chrysanthemum indicum microparticles on removal of hazardous Congo red dye using response surface methodology. International Journal of Industrial Chemistry, 2018, 9, 305-316.	3.1	16
30	Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum. Research on Chemical Intermediates, 2017, 43, 229-243.	2.7	15
31	Column adsorption studies on nickel and cobalt removal from aqueous solution using native and biochar form of <i>Tectona grandis</i> . Environmental Progress and Sustainable Energy, 2017, 36, 1030-1038.	2.3	44
32	Continuous biosorption of nickel from aqueous solution using Chrysanthemum indicum derived biochar in a fixed-bed column. Water Science and Technology, 2017, 76, 1895-1906.	2.5	10
33	Optimization of malachite green dye removal by <i>Chrysanthemum indicum</i> using response surface methodology. Environmental Progress and Sustainable Energy, 2016, 35, 1415-1419.	2.3	7
34	Ni (II) adsorption onto <i>Chrysanthemum indicum</i> : Influencing factors, isotherms, kinetics, and thermodynamics. International Journal of Phytoremediation, 2016, 18, 1046-1059.	3.1	12
35	Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Biotechnology, 2016, 15, 265-284.	8.1	89
36	Performance study on algal alginate as natural coagulant for the removal of Congo red dye. Desalination and Water Treatment, 2016, 57, 6384-6392.	1.0	26

#	Article	IF	Citations
37	Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium. 3 Biotech, 2016, 6, 9.	2.2	18
38	Removal of Ni(II) and Co(II) ions from aqueous solution using teak (<i>Tectona grandis</i>) leaves powder: adsorption kinetics, equilibrium and thermodynamics study. Desalination and Water Treatment, 2016, 57, 3995-4007.	1.0	17
39	ADSORPTION STUDIES OF BASIC DYES ONTO TEAK (TECTONA GRANDIS) LEAF POWDER. Journal of Urban and Environmental Engineering, 2016, 9, 102-108.	0.3	5
40	Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> . (Brown algae) as a coagulant. Environmental Progress and Sustainable Energy, 2015, 34, 1427-1434.	2.3	13
41	Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: Kinetics, equilibrium and thermodynamics. Chemical Engineering Research and Design, 2015, 96, 98-110.	5.6	52
42	Efficacy of <i>Chlorella pyrenoidosa </i> and <i>Scenedesmus abundans </i> for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). International Journal of Phytoremediation, 2015, 17, 377-381.	3.1	27
43	Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 123-132.	16.4	174
44	Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans. AEJ - Alexandria Engineering Journal, 2015, 54, 1291-1296.	6.4	39
45	Process optimization for Cr(VI) removal by <i>Mangifera Indica</i> seed powder: a response surface methodology approach. Desalination and Water Treatment, 2015, 53, 1653-1663.	1.0	10
46	Efficacy of <i>Eleusine coracana </i> (L.) Gaertn (Ragi) husk for adsorption of chromium(VI): A study using response surface methodology. Environmental Progress and Sustainable Energy, 2015, 34, 139-145.	2.3	1
47	Assessment of Groundwater Quality Using GIS and Statistical Approaches. Asian Journal of Earth Sciences, 2015, 8, 97-113.	0.3	6
48	Optimization of Process Parameters for CO2 Fixation from Bicarbonate Source by a Microalgae. Journal of Environmental Science and Technology, 2015, 8, 289-299.	0.3	2
49	Assessment of Seasonal Disparity on Hydrogeochemical Facies Distribution in Cooum River, India. Asian Journal of Earth Sciences, 2015, 9, 27-35.	0.3	1
50	Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support. International Nano Letters, 2014, 4, 1.	5.0	39
51	Determining Residual Ammonia in Flue Gas Conditioned Fly Ashes and Its Influence on the Pozzolanic Activity. Journal of Testing and Evaluation, 2011, 39, 69-76.	0.7	0
52	Determination of distribution coefficient of geomaterials and immobilizing agents. Canadian Geotechnical Journal, 2010, 47, 1139-1148.	2.8	17
53	Methodology for Determining Particle-Size Distribution Characteristics of Fly Ashes. Journal of Materials in Civil Engineering, 2010, 22, 435-442.	2.9	10
54	The Effect of Dual Flue Gas Conditioning on Fly Ash Characteristics. Journal of Testing and Evaluation, 2009, 37, 623-630.	0.7	1

#	Article	IF	CITATIONS
55	Comparison of Methods for Determining Specific-surface Area of Fine-grained Soils. Geotechnical and Geological Engineering, 2008, 26, 121-132.	1.7	81
56	Flue gas conditioning for reducing suspended particulate matter from thermal power stations. Progress in Energy and Combustion Science, 2008, 34, 685-695.	31.2	60
57	Influence of flue gas conditioning on fly ash characteristics. Fuel, 2008, 87, 3216-3222.	6.4	19
58	Entropy generation analysis of Cu-water nano?uid flow over a moving wedge., 0, 121, 14-21.		3