Stephanie J Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8094487/publications.pdf

Version: 2024-02-01

61984 36028 9,897 113 43 97 citations h-index g-index papers 113 113 113 10258 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrolytically Degradable Poly(βâ€amino ester) Resins with Tunable Degradation for 3D Printing by Projection Microâ€6tereolithography. Advanced Functional Materials, 2022, 32, 2106509.	14.9	12
2	Mapping Macrophage Polarization and Origin during the Progression of the Foreign Body Response to a Poly(ethylene glycol) Hydrogel Implant. Advanced Healthcare Materials, 2022, 11, e2102209.	7.6	7
3	Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication, 2022, 14, 025021.	7.1	13
4	Synthesis and Characterization of Click Nucleic Acid Conjugated Polymeric Microparticles for DNA Delivery Applications. Biomacromolecules, 2021, 22, 1127-1136.	5 . 4	7
5	Microscale Photopatterning of Throughâ€Thickness Modulus in a Monolithic and Functionally Graded 3Dâ€Printed Part. Small Science, 2021, 1, 2000017.	9.9	14
6	The Effects of Stably Tethered BMP-2 on MC3T3-E1 Preosteoblasts Encapsulated in a PEG Hydrogel. Biomacromolecules, 2021, 22, 1065-1079.	5 . 4	14
7	Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2002030.	7.6	16
8	The effects of processing variables on electrospun poly(ethylene glycol) fibrous hydrogels formed from the thiolâ€norbornene click reaction. Journal of Applied Polymer Science, 2021, 138, 50786.	2.6	2
9	Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. Biofabrication, 2021, 13, 044106.	7.1	26
10	Mechanics of 3D Cell–Hydrogel Interactions: Experiments, Models, and Mechanisms. Chemical Reviews, 2021, 121, 11085-11148.	47.7	62
11	A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Advanced Healthcare Materials, 2020, 9, e2001226.	7.6	12
12	Messenger RNA enrichment using synthetic oligo(T) click nucleic acids. Chemical Communications, 2020, 56, 13987-13990.	4.1	10
13	Photo-tunable hydrogel mechanical heterogeneity informed by predictive transport kinetics model. Soft Matter, 2020, 16, 4131-4141.	2.7	7
14	Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach. Journal of Materials Chemistry B, 2020, 8, 2775-2791.	5. 8	6
15	Viscoelastic and thermoreversible networks crosslinked by non-covalent interactions between "clickable―nucleic acid oligomers and DNA. Polymer Chemistry, 2020, 11, 2959-2968.	3.9	12
16	Viscoelasticity of hydrazone crosslinked poly(ethylene glycol) hydrogels directs chondrocyte morphology during mechanical deformation. Biomaterials Science, 2020, 8, 3804-3811.	5.4	15
17	Prostaglandin E2 and Its Receptor EP2 Modulate Macrophage Activation and Fusion <i>in Vitro</i> ACS Biomaterials Science and Engineering, 2020, 6, 2668-2681.	5.2	21
18	IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS Applied Bio Materials, 2020, 3, 1666-1680.	4.6	18

#	Article	IF	CITATIONS
19	â€The role of percolation in hydrogel-based tissue engineering and bioprinting'. Current Opinion in Biomedical Engineering, 2020, 15, 68-74.	3.4	15
20	Tethering transforming growth factor \hat{l}^21 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells. Acta Biomaterialia, 2020, 105, 68-77.	8.3	11
21	Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations. Acta Biomaterialia, 2020, 109, 37-50.	8.3	27
22	Stereolithographic 3D Printing for Deterministic Control over Integration in Dualâ€Material Composites. Advanced Materials Technologies, 2019, 4, 1900592.	5.8	20
23	Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels. Acta Biomaterialia, 2019, 100, 105-117.	8.3	25
24	Assessment and prevention of cartilage degeneration surrounding a focal chondral defect in the porcine model. Biochemical and Biophysical Research Communications, 2019, 514, 940-945.	2.1	4
25	An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor Î ² 3. Acta Biomaterialia, 2019, 93, 97-110.	8.3	49
26	The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 946-959.	2.7	11
27	A comparison of human mesenchymal stem cell osteogenesis in poly(ethylene glycol) hydrogels as a function of MMPâ€sensitive crosslinker and crosslink density in chemically defined medium. Biotechnology and Bioengineering, 2019, 116, 1523-1536.	3.3	15
28	Stabilization of Fibronectin by Random Copolymer Brushes Inhibits Macrophage Activation. ACS Applied Bio Materials, 2019, 2, 4698-4702.	4.6	14
29	Rabbit Model of Physeal Injury for the Evaluation of Regenerative Medicine Approaches. Tissue Engineering - Part C: Methods, 2019, 25, 701-710.	2.1	7
30	Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomaterials Science, 2019, 7, 5388-5403.	5.4	24
31	Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model. American Journal of Sports Medicine, 2019, 47, 212-221.	4.2	24
32	The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials, 2019, 190-191, 51-62.	11.4	56
33	Current and novel injectable hydrogels to treat focal chondral lesions: Properties and applicability. Journal of Orthopaedic Research, 2018, 36, 64-75.	2.3	25
34	The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomaterialia, 2018, 71, 37-48.	8.3	20
35	Cytocompatibility and Cellular Internalization of PEGylated "Clickable―Nucleic Acid Oligomers. Biomacromolecules, 2018, 19, 2535-2541.	5.4	8
36	Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel. Biochemical and Biophysical Research Communications, 2018, 499, 642-647.	2.1	18

#	Article	IF	Citations
37	The host response in tissue engineering: Crosstalk between immune cells and cell-laden scaffolds. Current Opinion in Biomedical Engineering, 2018, 6, 58-65.	3.4	33
38	The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Biomedical Materials (Bristol), 2018, 13, 045009.	3.3	30
39	A Stereolithographyâ€Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair. Macromolecular Bioscience, 2018, 18, 1700267.	4.1	43
40	Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner. Biomacromolecules, 2018, 19, 2880-2888.	5.4	74
41	A MMP7â€sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. Journal of Biomedical Materials Research - Part A, 2018, 106, 2344-2355.	4.0	20
42	Programmable Hydrogels for Cell Encapsulation and Neoâ€Tissue Growth to Enable Personalized Tissue Engineering. Advanced Healthcare Materials, 2018, 7, 1700605.	7.6	63
43	Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Engineering - Part B: Reviews, 2018, 24, 85-97.	4.8	34
44	Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dualâ€Cure Acrylateâ€Based Resin for Stereolithography. Advanced Engineering Materials, 2018, 20, 1800876.	3.5	100
45	Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomaterialia, 2018, 74, 121-130.	8.3	26
46	Structural Modeling of Mechanosensitivity in Non-Muscle Cells: Multiscale Approach to Understand Cell Sensing. ACS Biomaterials Science and Engineering, 2017, 3, 2934-2942.	5.2	8
47	Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels. Biotechnology and Bioengineering, 2017, 114, 2096-2108.	3.3	22
48	Heterogeneity is key to hydrogel-based cartilage tissue regeneration. Soft Matter, 2017, 13, 4841-4855.	2.7	47
49	Understanding the Spatiotemporal Degradation Behavior of Aggrecanase-Sensitive Poly(ethylene glycol) Hydrogels for Use in Cartilage Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 795-810.	3.1	19
50	Recapitulating the Micromechanical Behavior of Tension and Shear in a Biomimetic Hydrogel for Controlling Tenocyte Response. Advanced Healthcare Materials, 2017, 6, 1601095.	7.6	14
51	Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomaterialia, 2017, 64, 41-49.	8.3	51
52	A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments. Biomaterials, 2017, 143, 17-28.	11.4	26
53	Local Heterogeneities Improve Matrix Connectivity in Degradable and Photoclickable Poly(ethylene) Tj ETQq $1\ 2017$, 3, 2480-2492.	0.784314 5.2	rgBT /Overlo
54	Mechanical characterization of sequentially layered photo-clickable thiol-ene hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 454-465.	3.1	20

#	Article	IF	Citations
55	In vitro and in vivo models for assessing the host response to biomaterials. Drug Discovery Today: Disease Models, 2017, 24, 13-21.	1.2	22
56	The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels. Annals of Biomedical Engineering, 2016, 44, 1959-1969.	2.5	42
57	Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Acta Biomaterialia, 2016, 39, 1-11.	8.3	58
58	Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter, 2016, 12, 7505-7520.	2.7	63
59	Tuning Reaction and Diffusion Mediated Degradation of Enzymeâ€Sensitive Hydrogels. Advanced Healthcare Materials, 2016, 5, 432-438.	7.6	38
60	An Enzymeâ€Sensitive PEG Hydrogel Based on Aggrecan Catabolism for Cartilage Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 420-431.	7.6	71
61	Physiological osmolarities do not enhance longâ€ŧerm tissue synthesis in chondrocyte″aden degradable poly(ethylene glycol) hydrogels. Journal of Biomedical Materials Research - Part A, 2015, 103, 2186-2192.	4.0	1
62	Determination of the polymer-solvent interaction parameter for PEG hydrogels in water: Application of a self learning algorithm. Polymer, 2015, 66, 135-147.	3.8	30
63	Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomaterialia, 2015, 21, 142-153.	8.3	94
64	Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates. Acta Biomaterialia, 2015, 22, 103-110.	8.3	30
65	Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials, 2015, 41, 26-36.	11.4	129
66	Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials, 2015, 41, 79-88.	11.4	122
67	Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel. Matrix Biology, 2014, 40, 17-26.	3.6	15
68	Tissue Engineering Approaches to Cell-Based Type 1 Diabetes Therapy. Tissue Engineering - Part B: Reviews, 2014, 20, 455-467.	4.8	50
69	Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Acta Biomaterialia, 2014, 10, 3409-3420.	8.3	55
70	Interaction of Hyaluronan Binding Peptides with Glycosaminoglycans in Poly(ethylene glycol) Hydrogels. Biomacromolecules, 2014, 15, 1132-1141.	5.4	34
71	On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 61-74.	3.1	50
72	Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials, 2013, 34, 9969-9979.	11.4	138

#	Article	IF	Citations
73	Understanding the host response to cell-laden poly(ethylene glycol)-based hydrogels. Biomaterials, 2013, 34, 952-964.	11.4	30
74	Three dimensional live cell lithography. Optics Express, 2013, 21, 10269.	3.4	21
75	Dynamic compressive loading differentially regulates chondrocyte anabolic and catabolic activity with age. Biotechnology and Bioengineering, 2013, 110, 2046-2057.	3.3	24
76	Triphasic mixture model of cell-mediated enzymatic degradation of hydrogels. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 1197-1210.	1.6	26
77	An Instrumented Bioreactor for Mechanical Stimulation and Real-Time, Nondestructive Evaluation of Engineered Cartilage Tissue. Journal of Medical Devices, Transactions of the ASME, 2012, 6, .	0.7	9
78	Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels. Biomedical Materials (Bristol), 2012, 7, 024111.	3.3	21
79	Influence of chondrocyte maturation on acute response to impact injury in PEG hydrogels. Journal of Biomechanics, 2012, 45, 2556-2563.	2.1	7
80	Student award winner in the undergraduate category for the society of biomaterials 9th World Biomaterials Congress, Chengdu, China, June 1–5, 2012. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1375-1386.	4.0	367
81	Chondroitin sulfate and dynamic loading alter chondrogenesis of human MSCs in PEG hydrogels. Biotechnology and Bioengineering, 2012, 109, 2671-2682.	3.3	43
82	Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomaterialia, 2012, 8, 2193-2202.	8.3	35
83	The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Acta Biomaterialia, 2011, 7, 3829-3840.	8.3	59
84	Degradation Improves Tissue Formation in (Un)Loaded Chondrocyte-laden Hydrogels. Clinical Orthopaedics and Related Research, 2011, 469, 2725-2734.	1.5	54
85	Temporal progression of the host response to implanted poly(ethylene glycol)â€based hydrogels. Journal of Biomedical Materials Research - Part A, 2011, 96A, 621-631.	4.0	70
86	Incorporation of biomimetic matrix molecules in PEG hydrogels enhances matrix deposition and reduces loadâ€induced loss of chondrocyteâ€secreted matrix. Journal of Biomedical Materials Research - Part A, 2011, 97A, 281-291.	4.0	20
87	Presence of pores and hydrogel composition influence tensile properties of scaffolds fabricated from wellâ€defined sphere templates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 294-302.	3.4	46
88	Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 158-169.	3.4	62
89	Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide. Acta Biomaterialia, 2011, 7, 123-132.	8.3	44
90	Characterization of the <i>in vitro</i> macrophage response and <i>in vivo</i> host response to poly(ethylene glycol)â€based hydrogels. Journal of Biomedical Materials Research - Part A, 2010, 93A, 941-953.	4.0	120

#	Article	IF	CITATIONS
91	Characterization of a Novel Fiber Composite Material for Mechanotransduction Research of Fibrous Connective Tissues. Advanced Functional Materials, 2010, 20, 738-747.	14.9	12
92	Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate. Matrix Biology, 2010, 29, 51-62.	3.6	54
93	Medium Osmolarity and Pericellular Matrix Development Improves Chondrocyte Survival When Photoencapsulated in Poly(Ethylene Glycol) Hydrogels at Low Densities. Tissue Engineering - Part A, 2009, 15, 3037-3048.	3.1	16
94	Crossâ€linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene) Tj ETQq0 C 102, 1242-1250.	0 0 rgBT /C 3.3	Overlock 10 T
95	Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. Acta Biomaterialia, 2009, 5, 2929-2938.	8.3	45
96	Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomaterialia, 2009, 5, 2832-2846.	8.3	67
97	Designing 3D Photopolymer Hydrogels to Regulate Biomechanical Cues and Tissue Growth for Cartilage Tissue Engineering. Pharmaceutical Research, 2008, 25, 2379-2386.	3.5	70
98	Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Engineering - Part B: Reviews, 2008, 14, 149-165.	4.8	1,019
99	Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research - Part A, 2007, 83A, 323-331.	4.0	45
100	Photo-patterning of porous hydrogels for tissue engineering. Biomaterials, 2007, 28, 2978-2986.	11.4	242
101	Photopolymerization of Hydrogel Scaffolds. , 2005, , 71-90.		14
102	Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomaterialia, 2005, 1, 243-252.	8.3	110
103	Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 2004, 32, 407-417.	2.5	212
104	Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnology and Bioengineering, 2004, 86, 747-755.	3.3	271
105	Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research, 2004, 22, 1143-1149.	2.3	169
106	Biomaterials: Where We Have Been and Where We Are Going. Annual Review of Biomedical Engineering, 2004, 6, 41-75.	12.3	1,318
107	Synthesis and Characterization of Photopolymerized Multifunctional Hydrogels:Â Water-Soluble Poly(Vinyl Alcohol) and Chondroitin Sulfate Macromers for Chondrocyte Encapsulation. Macromolecules, 2004, 37, 6726-6733.	4.8	173

Tailoring the Degradation of Hydrogels Formed from Multivinyl Poly(ethylene glycol) and Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7

108

#	Article	IF	CITATIONS
109	Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Journal of Biomedical Materials Research Part B, 2003, 64A, 70-79.	3.1	395
110	Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1430-1436.	4.0	139
111	In situ forming degradable networks and their application in tissue engineering and drug delivery. Journal of Controlled Release, 2002, 78, 199-209.	9.9	430
112	Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene) Tj ETQq0 C	OggBT/	Overlock 10 Tf
113	Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 439-457.	3.5	674