Mark N Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8093995/publications.pdf

Version: 2024-02-01

40 papers

1,369 citations

394421 19 h-index 31 g-index

42 all docs 42 docs citations

times ranked

42

2361 citing authors

#	Article	IF	Citations
1	COMMD4 functions with the histone H2A-H2B dimer for the timely repair of DNA double-strand breaks. Communications Biology, 2021, 4, 484.	4.4	8
2	Dysregulated G2 phase checkpoint recovery pathway reduces DNA repair efficiency and increases chromosomal instability in a wide range of tumours. Oncogenesis, 2021, 10, 41.	4.9	3
3	Elevating CDCA3 levels in non-small cell lung cancer enhances sensitivity to platinum-based chemotherapy. Communications Biology, 2021, 4, 638.	4.4	12
4	Elevating CDCA3 Levels Enhances Tyrosine Kinase Inhibitor Sensitivity in TKI-Resistant EGFR Mutant Non-Small-Cell Lung Cancer. Cancers, 2021, 13, 4651.	3.7	5
5	3D Breast Tumor Models for Radiobiology Applications. Cancers, 2021, 13, 5714.	3.7	5
6	CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of \hat{l}^2 -catenin and E-cadherin. Oncogene, 2020, 39, 219-233.	5.9	39
7	SASH1 is a prognostic indicator and potential therapeutic target in non-small cell lung cancer. Scientific Reports, 2020, 10, 18605.	3.3	16
8	Defining COMMD4 as an anti-cancer therapeutic target and prognostic factor in non-small cell lung cancer. British Journal of Cancer, 2020, 123, 591-603.	6.4	13
9	Epidermal Growth Factor Receptor (EGFR)-Mutated Non-Small-Cell Lung Cancer (NSCLC). Pharmaceuticals, 2020, 13, 273.	3.8	28
10	Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Seminars in Cell and Developmental Biology, 2019, 86, 121-128.	5.0	26
11	Targeting NF-κB-mediated inflammatory pathways in cisplatin-resistant NSCLC. Lung Cancer, 2019, 135, 217-227.	2.0	25
12	Targeting CDCA3 to improve chemotherapy response in triple negative breast cancer patients. Annals of Oncology, 2019, 30, ν 101.	1.2	2
13	P1.01-01 Clinical Relevance of Targeting Proteins Required for Mitotic Progression to Improve Chemotherapy Response in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S354.	1.1	0
14	P1.03-05 COMMD4 in Lung Cancer: Towards a New Therapeutic Target and Diagnostic Biomarker. Journal of Thoracic Oncology, 2019, 14, S419.	1.1	0
15	Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nature Communications, 2019, 10, 5501.	12.8	40
16	FGFR2b activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer. Journal of Cell Science, 2018, 131, .	2.0	14
17	Expression of CDCA3 Is a Prognostic Biomarker andÂPotential Therapeutic Target in Non–Small CellÂLungÂCancer. Journal of Thoracic Oncology, 2017, 12, 1071-1084.	1.1	59
18	Mapping transmembrane residues of proteinase activated receptor 2 (PAR 2) that influence ligand-modulated calcium signaling. Pharmacological Research, 2017, 117, 328-342.	7.1	8

#	Article	IF	Citations
19	A data-driven structural model of hSSB1 (NABP2/OBFC2B) self-oligomerization. Nucleic Acids Research, 2017, 45, 8609-8620.	14.5	14
20	MA 03.11 Targeting CDCA3 Enhances Sensitivity to Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2017, 12, S1810-S1811.	1.1	0
21	A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution. Nucleic Acids Research, 2016, 44, 7963-7973.	14.5	26
22	17P Examination of EXOSC4 as a new prognostic marker and a novel therapeutic avenue in lung adenocarcinoma. Journal of Thoracic Oncology, 2016, 11, S63.	1.1	4
23	24P CDCA3 regulates the cell cycle and modulates cisplatin sensitivity in non-small cell lung cancer. Journal of Thoracic Oncology, 2016, 11, S65.	1.1	5
24	Nucleophosmin: from structure and function to disease development. BMC Molecular Biology, 2016, 17, 19.	3.0	189
25	Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response. Cell Death and Disease, 2016, 7, e2469-e2469.	6.3	22
26	hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress. Scientific Reports, 2016, 6, 27446.	3.3	31
27	16P The overexpression of SASH1 stimulates cell death in lung cancer cells. Journal of Thoracic Oncology, 2016, 11, S62-S63.	1.1	2
28	Potent Small Agonists of Protease Activated Receptor 2. ACS Medicinal Chemistry Letters, 2016, 7, 105-110.	2.8	16
29	Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. British Journal of Cancer, 2016, 114, 417-426.	6.4	35
30	Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance. Oncogene, 2016, 35, 468-478.	5.9	45
31	hSSB1 (NABP2/ OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway. Nucleic Acids Research, 2015, 43, 8817-8829.	14.5	37
32	EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface. Oncogene, 2015, 34, 1375-1383.	5.9	33
33	Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising. Frontiers in Oncology, 2014, 4, 86.	2.8	100
34	Activation of membrane-bound proteins and receptor systems: a link between tissue kallikrein and the KLK-related peptidases. Biological Chemistry, 2014, 395, 977-990.	2.5	13
35	DNA repair pathways and their therapeutic potential in lung cancer. Lung Cancer Management, 2014, 3, 159-173.	1.5	10
36	Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 861-873.	3.0	20

#	Article	IF	CITATIONS
37	Structure, function and pathophysiology of protease activated receptors., 2011, 130, 248-282.		315
38	The Role of Palmitoylation in Signalling, Cellular Trafficking and Plasma Membrane Localization of Protease-Activated Receptor-2. PLoS ONE, 2011, 6, e28018.	2.5	41
39	Proteolysis-induced N-terminal Ectodomain Shedding of the Integral Membrane Glycoprotein CUB Domain-containing Protein 1 (CDCP1) Is Accompanied by Tyrosine Phosphorylation of Its C-terminal Domain and Recruitment of Src and PKCÎ'. Journal of Biological Chemistry, 2010, 285, 26162-26173.	3.4	62
40	Prostatic trypsin-like kallikrein-related peptidases (KLKs) and other prostate-expressed tryptic proteinases as regulators of signalling via proteinase-activated receptors (PARs). Biological Chemistry, 2008, 389, 653-668.	2.5	38