Lovorka Stojic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809276/publications.pdf

Version: 2024-02-01

21 papers 1,924 citations

430874 18 h-index 713466 21 g-index

23 all docs

23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

3283 citing authors

#	Article	IF	CITATIONS
1	CCT3- <i>LINC00326</i> axis regulates hepatocarcinogenic lipid metabolism. Gut, 2022, 71, 2081-2092.	12.1	32
2	Long Noncoding RNAs at the Crossroads of Cell Cycle and Genome Integrity. Trends in Genetics, 2021, 37, 528-546.	6.7	23
3	A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature Communications, 2020, 11, 1851.	12.8	43
4	Tuning the Expression of Long Noncoding RNA Loci with CRISPR Interference. Methods in Molecular Biology, 2020, 2161, 1-16.	0.9	2
5	SAM68 is required for regulation of Pumilio by the NORAD long noncoding RNA. Genes and Development, 2018, 32, 70-78.	5.9	61
6	Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Research, 2018, 46, 5950-5966.	14.5	101
7	Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science, 2017, 357, 83-88.	12.6	152
8	Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science, 2017, 355, 1433-1436.	12.6	265
9	Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nature Communications, 2016, 7, 10406.	12.8	77
10	5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer. Genome Biology, 2015, 16, 69.	8.8	60
11	Imprinted Chromatin around DIRAS3 Regulates Alternative Splicing of GNG12-AS1, a Long Noncoding RNA. American Journal of Human Genetics, 2013, 93, 224-235.	6.2	41
12	Molecular mechanisms of genomic imprinting and clinical implications for cancer. Expert Reviews in Molecular Medicine, 2011, 13, e2.	3.9	66
13	Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics and Chromatin, 2011, 4, 16.	3.9	113
14	Enhancer of Zeste Homolog 2 Overexpression Has a Role in the Development of Anaplastic Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1029-1038.	3.6	62
15	Mismatch Repair Status and the Response of Human Cells to Cisplatin. Cell Cycle, 2007, 6, 1796-1802.	2.6	40
16	High Doses of SN1 Type Methylating Agents Activate DNA Damage Signaling Cascades that are Largely Independent of Mismatch Repair. Cell Cycle, 2005, 4, 473-477.	2.6	40
17	Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes and Development, 2004, 18, 1331-1344.	5.9	206
18	Is mismatch repair really required for ionizing radiation–induced DNA damage signaling?. Nature Genetics, 2004, 36, 432-433.	21.4	18

LOVORKA STOJIC

#	Article	IF	CITATIONS
19	Mismatch repair and DNA damage signalling. DNA Repair, 2004, 3, 1091-1101.	2.8	340
20	Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO Journal, 2003, 22, 2245-2254.	7.8	160
21	Mismatch repair-dependent transcriptome changes in human cells treated with the methylating agent N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Research, 2003, 63, 8158-66.	0.9	18