Martin Margittai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational fingerprinting of tau variants and strains by Raman spectroscopy. RSC Advances, 2021, 11, 8899-8915.	3.6	15
2	Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. Journal of Clinical Medicine, 2021, 10, 3931.	2.4	10
3	A thiol-based intramolecular redox switch in four-repeat tau controls fibril assembly and disassembly. Journal of Biological Chemistry, 2021, 297, 101021.	3.4	4
4	Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Frontiers in Neuroscience, 2020, 14, 761.	2.8	16
5	Driving tau into phase-separated liquid droplets. Journal of Biological Chemistry, 2019, 294, 11060-11061.	3.4	1
6	Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Physical Chemistry Chemical Physics, 2019, 21, 1863-1871.	2.8	13
7	Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. Journal of Biological Chemistry, 2018, 293, 17336-17348.	3.4	35
8	The distinct structural preferences of tau protein repeat domains. Chemical Communications, 2018, 54, 5700-5703.	4.1	35
9	Revealing Conformational Variants of Solutionâ€Phase Intrinsically Disordered Tau Protein at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2017, 56, 15584-15588.	13.8	26
10	Revealing Conformational Variants of Solutionâ€Phase Intrinsically Disordered Tau Protein at the Singleâ€Molecule Level. Angewandte Chemie, 2017, 129, 15790-15794.	2.0	4
11	How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?. ACS Chemical Neuroscience, 2016, 7, 565-575.	3.5	27
12	Fracture and Growth Are Competing Forces Determining the Fate of Conformers in Tau Fibril Populations. Journal of Biological Chemistry, 2016, 291, 12271-12281.	3.4	30
13	Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR). Methods in Molecular Biology, 2016, 1345, 185-199.	0.9	6
14	RNA Binds to Tau Fibrils and Sustains Template-Assisted Growth. Biochemistry, 2015, 54, 4731-4740.	2.5	68
15	Amplification of Tau Fibrils from Minute Quantities of Seeds. Biochemistry, 2014, 53, 5804-5809.	2.5	71
16	Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angewandte Chemie - International Edition, 2014, 53, 1590-1593.	13.8	38
17	Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons. Journal of Biological Chemistry, 2013, 288, 1856-1870.	3.4	436
18	Molecular insights into the reversible formation of tau protein fibrils. Chemical Communications, 2013, 49, 3582.	4.1	34

MARTIN MARGITTAI

#	Article	IF	CITATIONS
19	Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau. Journal of the American Chemical Society, 2012, 134, 10271-10278.	13.7	63
20	Cross-seeding and Conformational Selection between Three- and Four-repeat Human Tau Proteins. Journal of Biological Chemistry, 2012, 287, 14950-14959.	3.4	63
21	Variations in Filament Conformation Dictate Seeding Barrier between Three- and Four-Repeat Tau. Biochemistry, 2011, 50, 4330-4336.	2.5	81
22	Three- and Four-repeat Tau Coassemble into Heterogeneous Filaments. Journal of Biological Chemistry, 2010, 285, 37920-37926.	3.4	56
23	Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Quarterly Reviews of Biophysics, 2008, 41, 265-297.	5.7	159
24	Investigation of α-Synuclein Fibril Structure by Site-directed Spin Labeling. Journal of Biological Chemistry, 2007, 282, 24970-24979.	3.4	218
25	Spin Labeling Analysis of Amyloids and Other Protein Aggregates. Methods in Enzymology, 2006, 413, 122-139.	1.0	40
26	Side Chain-dependent Stacking Modulates Tau Filament Structure. Journal of Biological Chemistry, 2006, 281, 37820-37827.	3.4	73
27	Determinants of liposome fusion mediated by synaptic SNARE proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2858-2863.	7.1	176
28	Template-assisted filament growth by parallel stacking of tau. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10278-10283.	7.1	264
29	A Transient N-terminal Interaction of SNAP-25 and Syntaxin Nucleates SNARE Assembly. Journal of Biological Chemistry, 2004, 279, 7613-7621.	3.4	165
30	The Habc Domain and the SNARE Core Complex Are Connected by a Highly Flexible Linker. Biochemistry, 2003, 42, 4009-4014.	2.5	41
31	Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15516-15521.	7.1	268
32	Rapid and Selective Binding to the Synaptic SNARE Complex Suggests a Modulatory Role of Complexins in Neuroexocytosis. Journal of Biological Chemistry, 2002, 277, 7838-7848.	3.4	121
33	SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. Journal of Cell Biology, 2002, 158, 751-760.	5.2	108
34	Homo- and Heterooligomeric SNARE Complexes Studied by Site-directed Spin Labeling. Journal of Biological Chemistry, 2001, 276, 13169-13177.	3.4	115
35	The Synaptophysin–Synaptobrevin Complex: a Hallmark of Synaptic Vesicle Maturation. Journal of Neuroscience, 1999, 19, 1922-1931	3.6	168
36	Mixed and Non-cognate SNARE Complexes. Journal of Biological Chemistry, 1999, 274, 15440-15446.	3.4	271

#	Article	IF	CITATIONS
37	A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Letters, 1999, 446, 40-44.	2.8	82
38	Inhibition of SNARE Complex Assembly Differentially Affects Kinetic Components of Exocytosis. Cell, 1999, 99, 713-722.	28.9	286