Richard M Lopachin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo neurophysiological assessment of in silico predictions of neurotoxicity: Citronellal, 3,4-dichloro-1-butene, and benzyl bromoacetate. NeuroToxicology, 2022, 90, 48-61.	3.0	Ο
2	Enolate-forming compounds provide protection from platinum neurotoxicity. Chemico-Biological Interactions, 2020, 317, 108961.	4.0	1
3	Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology. Toxicology in Vitro, 2020, 69, 104989.	2.4	3
4	Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. NeuroToxicology, 2020, 79, 95-103.	3.0	22
5	Mechanisms of soft and hard electrophile toxicities. Toxicology, 2019, 418, 62-69.	4.2	50
6	Phloretin cytoprotection and toxicity. Chemico-Biological Interactions, 2018, 296, 117-123.	4.0	15
7	Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 476-486.	2.5	6
8	Joint toxic effects of the type-2 alkene electrophiles. Chemico-Biological Interactions, 2016, 254, 198-206.	4.0	8
9	Enolate-Forming Compounds as a Novel Approach to Cytoprotection. Chemical Research in Toxicology, 2016, 29, 2096-2107.	3.3	10
10	Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radical Research, 2016, 50, 195-205.	3.3	61
11	2-Acetylcyclopentanone, an Enolate-Forming 1,3-Dicarbonyl Compound, Is Cytoprotective in Warm Ischemia-Reperfusion Injury of Rat Liver. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 150-158.	2.5	10
12	Toxic neuropathies: Mechanistic insights based on a chemical perspective. Neuroscience Letters, 2015, 596, 78-83.	2.1	40
13	Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chemical Research in Toxicology, 2014, 27, 1081-1091.	3.3	328
14	Protective Properties of 2-Acetylcyclopentanone in a Mouse Model of Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 259-269.	2.5	19
15	Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry. Environmental Health Perspectives, 2012, 120, 1650-1657.	6.0	151
16	Application of the Hard and Soft, Acids and Bases (HSAB) Theory to Toxicant–Target Interactions. Chemical Research in Toxicology, 2012, 25, 239-251.	3.3	237
17	\hat{I}^2 -Dicarbonyl enolates: a new class of neuroprotectants. Journal of Neurochemistry, 2011, 116, 132-143.	3.9	32
18	Synaptosomal Toxicity and Nucleophilic Targets of 4-Hydroxy-2-Nonenal. Toxicological Sciences, 2009, 107–171-181	3.1	39

RICHARD M LOPACHIN

#	Article	IF	CITATIONS
19	Molecular Mechanisms of 4-Hydroxy-2-nonenal and Acrolein Toxicity: Nucleophilic Targets and Adduct Formation. Chemical Research in Toxicology, 2009, 22, 1499-1508.	3.3	229
20	Type-2 alkenes mediate synaptotoxicity in neurodegenerative diseases. NeuroToxicology, 2008, 29, 871-882.	3.0	42
21	Acrylamide-Induced Nerve Terminal Damage: Relevance to Neurotoxic and Neurodegenerative Mechanisms. Journal of Agricultural and Food Chemistry, 2008, 56, 5994-6003.	5.2	82
22	Molecular Mechanisms of the Conjugated α,β-Unsaturated Carbonyl Derivatives: Relevance to Neurotoxicity and Neurodegenerative Diseases. Toxicological Sciences, 2008, 104, 235-249.	3.1	150
23	Neurotoxic Mechanisms of Electrophilic Type-2 Alkenes: Soft Soft Interactions Described by Quantum Mechanical Parameters. Toxicological Sciences, 2007, 98, 561-570.	3.1	89
24	Structure-Toxicity Analysis of Type-2 Alkenes: In Vitro Neurotoxicity. Toxicological Sciences, 2007, 95, 136-146.	3.1	70
25	Acrylamide Inhibits Dopamine Uptake in Rat Striatal Synaptic Vesicles. Toxicological Sciences, 2006, 89, 224-234.	3.1	62
26	Synaptic Cysteine Sulfhydryl Groups as Targets of Electrophilic Neurotoxicants. Toxicological Sciences, 2006, 94, 240-255.	3.1	105
27	2,5-Hexanedione-Induced Changes in the Neurofilament Subunit Pools of Rat Peripheral Nerve. NeuroToxicology, 2005, 26, 229-240.	3.0	35
28	Î ³ -Diketone Central Neuropathy: Quantitative Analyses of Cytoskeletal Components in Myelinated Axons of the Rat Rubrospinal Tract. NeuroToxicology, 2005, 26, 1021-1030.	3.0	10
29	Acrylamide Neurotoxicity: Neurological, Morhological and Molecular Endpoints in Animal Models. , 2005, 561, 21-37.		86
30	Protein Adduct Formation as a Molecular Mechanism in Neurotoxicity. Toxicological Sciences, 2005, 86, 214-225.	3.1	145
31	2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions. Toxicology and Applied Pharmacology, 2004, 198, 61-73.	2.8	28
32	Î ³ -Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction. Toxicology and Applied Pharmacology, 2004, 199, 20-34.	2.8	30
33	The Changing View of Acrylamide Neurotoxicity. NeuroToxicology, 2004, 25, 617-630.	3.0	241
34	In Vivo and In Vitro Effects of Acrylamide on Synaptosomal Neurotransmitter Uptake and Release. NeuroToxicology, 2004, 25, 349-363.	3.0	77
35	Î ³ -diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots. Toxicology and Applied Pharmacology, 2003, 193, 29-46.	2.8	27
36	Application of Proteomics to the Study of Molecular Mechanisms in Neurotoxicology. NeuroToxicology, 2003, 24, 761-775.	3.0	28

#	Article	IF	CITATIONS
37	The Role of Fast Axonal Transport in Acrylamide Pathophysiology: Mechanism or Epiphenomenon?. NeuroToxicology, 2002, 23, 253-257.	3.0	25
38	Rubidium Uptake and Accumulation in Peripheral Myelinated Internodal Axons and Schwann Cells. Journal of Neurochemistry, 2002, 69, 968-977.	3.9	7
39	Intraneuronal Ion Distribution during Experimental Oxygen/Glucose Deprivation: Routes of Ion Flux as Targets of Neuroprotective Strategies. Annals of the New York Academy of Sciences, 1999, 890, 191-203.	3.8	11