
Joseph C K Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8092222/publications.pdf Version: 2024-02-01

LOSEDH C K LEUNC

#	Article	IF	CITATIONS
1	Protective role of kallistatin in renal fibrosis via modulation of Wnt∫β-catenin signaling. Clinical Science, 2021, 135, 429-446.	4.3	12
2	Spleen Tyrosine Kinase Inhibition Ameliorates Tubular Inflammation in IgA Nephropathy. Frontiers in Physiology, 2021, 12, 650888.	2.8	9
3	Tubule-specific deletion of LincRNA-p21 ameliorates lipotoxic kidney injury. Molecular Therapy - Nucleic Acids, 2021, 26, 1280-1290.	5.1	3
4	A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Progress in Lipid Research, 2020, 77, 101020.	11.6	76
5	The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clinical Science, 2020, 134, 2873-2891.	4.3	20
6	Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Translational Medicine, 2019, 8, 898-910.	3.3	31
7	Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrology Dialysis Transplantation, 2018, 33, 1323-1332.	0.7	62
8	Activated renal tubular Wnt/β-catenin signalingÂtriggers renal inflammation duringÂoverload proteinuria. Kidney International, 2018, 93, 1367-1383.	5.2	47
9	Role of Mesangial-Podocytic-Tubular Cross-Talk in IgA Nephropathy. Seminars in Nephrology, 2018, 38, 485-495.	1.6	28
10	Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice. Oncotarget, 2017, 8, 103640-103656.	1.8	17
11	Recent advances in the understanding and management of IgA nephropathy. F1000Research, 2016, 5, 161.	1.6	4
12	BMP7 reduces inflammation and oxidative stress in diabetic tubulopathy. Clinical Science, 2015, 128, 269-280.	4.3	34
13	Novel genes and variants associated with IgA nephropathy by co-segregating with the disease phenotypes in 10 IgAN families. Gene, 2015, 571, 43-51.	2.2	14
14	Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 907-920.	4.9	13
15	The Treatment of IgA Nephropathy. Kidney Diseases (Basel, Switzerland), 2015, 1, 19-26.	2.5	7
16	Mesenchymal Stem Cells Modulate Albumin-Induced Renal Tubular Inflammation and Fibrosis. PLoS ONE, 2014, 9, e90883.	2.5	64
17	Tissue Kallikrein Mediates Pro-Inflammatory Pathways and Activation of Protease-Activated Receptor-4 in Proximal Tubular Epithelial Cells. PLoS ONE, 2014, 9, e88894.	2.5	36
18	Albumin and glycated albumin activate KIM-1 release in tubular epithelial cells through distinct kinetics and mechanisms. Inflammation Research, 2014, 63, 831-839.	4.0	3

JOSEPH C K LEUNG

#	Article	IF	CITATIONS
19	BMPâ€7 represses albuminâ€induced chemokine synthesis in kidney tubular epithelial cells through destabilization of NFâ€iºBâ€inducing kinase. Immunology and Cell Biology, 2014, 92, 427-435.	2.3	12
20	Kidney injury moleculeâ€1: More than just an injury marker of tubular epithelial cells?. Journal of Cellular Physiology, 2013, 228, 917-924.	4.1	117
21	Toll-Like Receptor 4 Promotes Tubular Inflammation in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 86-102.	6.1	313
22	The role of leptin and its short-form receptor in inflammation in db/db mice infused with peritoneal dialysis fluid. Nephrology Dialysis Transplantation, 2012, 27, 3119-3129.	0.7	11
23	Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 1040-1050.	2.8	39
24	Diabetic Tubulopathy: An Emerging Entity. Contributions To Nephrology, 2011, 170, 124-134.	1.1	100
25	Differential effects of advanced glycation endâ€products on renal tubular cell inflammation. Nephrology, 2011, 16, 417-425.	1.6	29
26	Additive renoprotective effects of B2-kinin receptor blocker and PPAR-Î ³ agonist in uninephrectomized db/db mice. Laboratory Investigation, 2011, 91, 1351-1362.	3.7	22
27	Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. Journal of Translational Medicine, 2011, 9, 169.	4.4	29
28	Inflammation in Peritoneal Dialysis. Nephron Clinical Practice, 2010, 116, c11-c18.	2.3	56
29	Peritoneal Adipocytes and Their Role in Inflammation during Peritoneal Dialysis. Mediators of Inflammation, 2010, 2010, 1-10.	3.0	18
30	In vitro enhanced chemotaxis of CD25+ mononuclear cells in patients with familial IgAN through glomerulotubular interactions. American Journal of Physiology - Renal Physiology, 2010, 299, F359-F368.	2.7	8
31	Macromolecular IgA1 taken from patients with familial IgA Nephropathy or their asymptomatic relatives have higher reactivity to mesangial cells in vitro. Kidney International, 2009, 75, 1330-1339.	5.2	32
32	Roles of Neutrophil Gelatinase-Associated Lipocalin in Continuous Ambulatory Peritoneal Dialysis-Related Peritonitis. Journal of Clinical Immunology, 2009, 29, 365-378.	3.8	24
33	Podocyte Pathology. , 2009, , 69-81.		1
34	Renin-Angiotensin System. , 2009, , 289-307.		0
35	Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. American Journal of Physiology - Renal Physiology, 2008, 294, F945-F955.	2.7	116
36	BMP-7 protects mesangial cells from injury by polymeric IgA. Kidney International, 2008, 74, 1026-1039.	5.2	23

JOSEPH C K LEUNG

#	Article	IF	CITATIONS
37	Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrology Dialysis Transplantation, 2008, 24, 62-72.	0.7	135
38	Regulation of CCN2/CTGF and related cytokines in cultured peritoneal cells under conditions simulating peritoneal dialysis. Nephrology Dialysis Transplantation, 2008, 24, 458-469.	0.7	31
39	Synthesis of TNF-Â by mesangial cells cultured with polymeric anionic IgA role of MAPK and NF-ÂB. Nephrology Dialysis Transplantation, 2007, 23, 72-81.	0.7	59
40	Hyperleptinaemia and chronic inflammation after peritonitis predicts poor nutritional status and mortality in patients on peritoneal dialysis. Nephrology Dialysis Transplantation, 2007, 22, 1445-1450.	0.7	35
41	Glycosylation Profile of Differently Charged IgA1 and Their Binding Characteristics to Cultured Mesangial Cells in IgA Nephropathy. Nephron Experimental Nephrology, 2007, 107, e107-e118.	2.2	4
42	Mechanisms of tubulointerstitial injury in IgA nephropathy. Kidney International, 2005, 67, S110-S115.	5.2	39
43	Activation of tubular epithelial cells by mesangial-derived TNF-α: Glomerulotubular communication in lgA nephropathy. Kidney International, 2005, 67, 602-612.	5.2	92
44	Tubular Expression of Angiotensin II Receptors and Their Regulation in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2306-2317.	6.1	70
45	Glucose degradation products downregulate ZO-1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrology Dialysis Transplantation, 2005, 20, 1336-1349.	0.7	55
46	Anti-macrophage migration inhibitory factor reduces transforming growth factor-Â1 expression in experimental IgA nephropathy. Nephrology Dialysis Transplantation, 2004, 19, 1976-1985.	0.7	44
47	Mesangial expression of angiotensin II receptor in IgA nephropathy and its regulation by polymeric IgA1. Kidney International, 2004, 66, 1403-1416.	5.2	44
48	Novel mechanisms of tubulointerstitial injury in IgA nephropathy: a new therapeutic paradigm in the prevention of progressive renal failure. Clinical and Experimental Nephrology, 2004, 8, 297-303.	1.6	22
49	Polymeric IgA1 from Patients with IgA Nephropathy Upregulates Transforming Growth Factor-Î ² Synthesis and Signal Transduction in Human Mesangial Cells via the Renin-Angiotensin System. Journal of the American Society of Nephrology: JASN, 2003, 14, 3127-3137.	6.1	80
50	Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrology Dialysis Transplantation, 2003, 18, 36-45.	0.7	48
51	Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. Journal of Clinical Investigation, 2003, 111, 515-527.	8.2	234
52	Size-dependent binding of IgA to HepG2, U937, and human mesangial cells. Translational Research, 2002, 140, 398-406.	2.3	27
53	Increased sialylation of polymeric λâ€ I gA ₁ in patients with IgA nephropathy. Journal of Clinical Laboratory Analysis, 2002, 16, 11-19.	2.1	38
54	Absence of CD89, Polymeric Immunoglobulin Receptor, and Asialoglycoprotein Receptor on Human Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2000, 11, 241-249.	6.1	87