
Marcelo D Carattino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8091439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epithelial Na+ Channels Are Activated by Laminar Shear Stress. Journal of Biological Chemistry, 2004, 279, 4120-4126.	3.4	139
2	Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 17608-17616.	3.4	136
3	Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8506-8511.	7.1	130
4	The Epithelial Na+ Channel Is Inhibited by a Peptide Derived from Proteolytic Processing of Its α Subunit. Journal of Biological Chemistry, 2006, 281, 18901-18907.	3.4	127
5	The Urothelium: Life in a Liquid Environment. Physiological Reviews, 2020, 100, 1621-1705.	28.8	92
6	Expression and distribution of PIEZO1 in the mouse urinary tract. American Journal of Physiology - Renal Physiology, 2019, 317, F303-F321.	2.7	83
7	Mutations in the Pore Region Modify Epithelial Sodium Channel Gating by Shear Stress. Journal of Biological Chemistry, 2005, 280, 4393-4401.	3.4	62
8	Arachidonic Acid Regulates Surface Expression of Epithelial Sodium Channels. Journal of Biological Chemistry, 2003, 278, 36202-36213.	3.4	57
9	Bladder filling and voiding affect umbrella cell tight junction organization and function. American Journal of Physiology - Renal Physiology, 2013, 305, F1158-F1168.	2.7	53
10	Independent Contribution of Extracellular Proton Binding Sites to ASIC1a Activation. Journal of Biological Chemistry, 2013, 288, 34375-34383.	3.4	45
11	Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. Journal of Neurophysiology, 2019, 122, 358-367.	1.8	41
12	Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight, 2021, 6, .	5.0	40
13	Prostasin interacts with the epithelial Na ⁺ channel and facilitates cleavage of the γ-subunit by a second protease. American Journal of Physiology - Renal Physiology, 2014, 307, F1080-F1087.	2.7	38
14	Conformational Changes Associated with Proton-dependent Gating of ASIC1a. Journal of Biological Chemistry, 2009, 284, 36473-36481.	3.4	37
15	Insights into the Mechanism of Pore Opening of Acid-sensing Ion Channel 1A. Journal of Biological Chemistry, 2011, 286, 16297-16307.	3.4	33
16	Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents. ENeuro, 2017, 4, ENEURO.0381-16.2017.	1.9	30
17	Increased urothelial paracellular transport promotes cystitis. American Journal of Physiology - Renal Physiology, 2015, 309, F1070-F1081.	2.7	29
18	Gating Transitions in the Palm Domain of ASIC1a*. Journal of Biological Chemistry, 2013, 288, 5487-5495.	3.4	28

MARCELO D CARATTINO

#	Article	IF	CITATIONS
19	Acid-sensing ion channels in sensory signaling. American Journal of Physiology - Renal Physiology, 2020, 318, F531-F543.	2.7	26
20	The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization. Journal of Biological Chemistry, 2016, 291, 11407-11419.	3.4	25
21	Contribution of Residues in Second Transmembrane Domain of ASIC1a Protein to Ion Selectivity. Journal of Biological Chemistry, 2012, 287, 12927-12934.	3.4	22
22	Intracellular Na+ Regulates Epithelial Na+ Channel Maturation. Journal of Biological Chemistry, 2015, 290, 11569-11577.	3.4	19
23	Cell-specific regulation of L-WNK1 by dietary K ⁺ . American Journal of Physiology - Renal Physiology, 2016, 310, F15-F26.	2.7	18
24	Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS ONE, 2018, 13, e0196894.	2.5	18
25	Urinary K+ promotes irritative voiding symptoms and pain in the face of urothelial barrier dysfunction. Scientific Reports, 2019, 9, 5509.	3.3	13
26	ASIC3 fine-tunes bladder sensory signaling. American Journal of Physiology - Renal Physiology, 2018, 315, F870-F879.	2.7	12
27	Cdc42 activation couples fluid shear stress to apical endocytosis in proximal tubule cells. Physiological Reports, 2017, 5, e13460.	1.7	11
28	Molecular determinants of afferent sensitization in a rat model of cystitis with urothelial barrier dysfunction. Journal of Neurophysiology, 2019, 122, 1136-1146.	1.8	10
29	Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel. Current Opinion in Nephrology and Hypertension, 2011, 20, 555-560.	2.0	8
30	Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel. Journal of Biological Chemistry, 2020, 295, 4950-4962.	3.4	6
31	Bladder infection with uropathogenic <i>Escherichia coli</i> increases the excitability of afferent neurons. American Journal of Physiology - Renal Physiology, 2022, 322, F1-F13.	2.7	6
32	Acid-sensing ion channels modulate bladder nociception. American Journal of Physiology - Renal Physiology, 2021, 321, F587-F599.	2.7	4
33	Studies of ultrastructure, gene expression, and marker analysis reveal that mouse bladder PDGFRA ⁺ interstitial cells are fibroblasts. American Journal of Physiology - Renal Physiology, 0, , .	2.7	4
34	Expression and Analysis of Flow-regulated Ion Channels in Xenopus Oocytes. Bio-protocol, 2017, 7, .	0.4	3
35	Clues to renal sodium retention. American Journal of Physiology - Renal Physiology, 2011, 300, F639-F640.	2.7	2
36	Differential contributions of α and γ ENaC subunit cleavage to channel activity. FASEB Journal, 2008, 22, 1158.10.	0.5	0

#	Article	IF	CITATIONS
37	Mapping a limited inhibitory domain derived from the gamma subunit of ENaC. FASEB Journal, 2010, 24, 611.23.	0.5	Ο
38	Mutations in the finger domain of the epithelial sodium channel alter the shear stress response. FASEB Journal, 2011, 25, 1041.11.	0.5	0
39	Dietary Na + restriction promotes release of an inhibitory tract from the Î ³ ENaC subunit. FASEB Journal, 2012, 26, 1068.1.	0.5	0
40	Shear Stress Dependent Regulation of Apical Endocytosis in Renal Proximal Tubule Epithelia. FASEB Journal, 2015, 29, 809.4.	0.5	0