Stephen M Ogle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8090722/publications.pdf

Version: 2024-02-01

101543 56724 9,392 88 36 83 citations g-index h-index papers 93 93 93 9710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 789-813.	4.0	1,739
2	Climate-smart soils. Nature, 2016, 532, 49-57.	27.8	1,320
3	Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomy for Sustainable Development, 2002, 22, 755-775.	0.8	980
4	The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 2004, 10, 155-160.	9.5	658
5	Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry, 2005, 72, 87-121.	3.5	538
6	Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2007, 118, 6-28.	5.3	459
7	No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems and Environment, 2012, 149, 37-49.	5.3	226
8	Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a processâ€based model. Global Change Biology, 2010, 16, 810-822.	9.5	196
9	Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale. Soil Biology and Biochemistry, 2011, 43, 702-717.	8.8	195
10	Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biology, 2003, 9, 1521-1542.	9.5	175
11	Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology, 2012, 18, 2089-2101.	9.5	150
12	Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Scientific Reports, 2019, 9, 11665.	3.3	148
13	Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 2009, 149, 84-91.	5.1	137
14	Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Frontiers in Ecology and the Environment, 2011, 9, 169-173.	4.0	135
15	Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil and Tillage Research, 2010, 106, 177-184.	5.6	103
16	Management swing potential for bioenergy crops. GCB Bioenergy, 2013, 5, 623-638.	5.6	94
17	Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology, 2018, 24, e705-e718.	9.5	92
18	Estimating Agricultural Nitrous Oxide Emissions. Eos, 2008, 89, 529-529.	0.1	91

#	Article	IF	Citations
19	Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences, 2019, 16, 1225-1248.	3.3	81
20	Simulating greenhouse gas mitigation potentials for Chinese Croplands using the <scp>DAYCENT</scp> ecosystem model. Global Change Biology, 2014, 20, 948-962.	9.5	77
21	Evaluating atmospheric CO ₂ inversions at multiple scales over a highly inventoried agricultural landscape. Global Change Biology, 2013, 19, 1424-1439.	9.5	76
22	Deriving Grassland Management Factors for a Carbon Accounting Method Developed by the Intergovernmental Panel on Climate Change. Environmental Management, 2004, 33, 474-84.	2.7	70
23	An empirically based approach for estimating uncertainty associated with modelling carbon sequestration in soils. Ecological Modelling, 2007, 205, 453-463.	2.5	69
24	Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environmental Science & Emp; Technology, 2021, 55, 14795-14805.	10.0	68
25	Impacts of Exotic Annual Brome Grasses (Bromus spp.) on Ecosystem Properties of Northern Mixed Grass Prairie. American Midland Naturalist, 2003, 149, 46-58.	0.4	66
26	How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils?. Plant and Soil, 2011, 338, 247-259.	3.7	61
27	Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action. Global Change Biology, 2014, 20, 1-6.	9.5	61
28	Global mitigation potential and costs of reducing agricultural non-CO ₂ greenhouse gas emissions through 2030. Journal of Integrative Environmental Sciences, 2015, 12, 87-105.	2.5	61
29	Residue Carbon Stabilization in Soil Aggregates of Noâ€Till and Tillage Management of Dryland Cropping Systems. Soil Science Society of America Journal, 2008, 72, 507-513.	2.2	54
30	Improving regional soil carbon inventories: Combining the IPCC carbon inventory method with regression kriging. Geoderma, 2012, 189-190, 288-295.	5.1	53
31	Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. Agriculture, Ecosystems and Environment, 2012, 146, 137-146.	5.3	51
32	15N isotopic crop residue cycling studies and modeling suggest that IPCC methodologies to assess residue contributions to N2O-N emissions should be reevaluated. Nutrient Cycling in Agroecosystems, 2010, 86, 383-390.	2.2	49
33	Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications. Remote Sensing of Environment, 2009, 113, 2186-2193.	11.0	46
34	Soil organic carbon stock change due to land use activity along the agricultural frontier of the southwestern Amazon, Brazil, between 1970 and 2002. Global Change Biology, 2010, 16, 2775-2788.	9.5	45
35	Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. Ecological Modelling, 2014, 277, 1-12.	2.5	40
36	Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agriculture, Ecosystems and Environment, 2011, 144, 150-158.	5.3	39

3

#	Article	IF	CITATIONS
37	RAINFALL EFFECTS ON PLANT–HERBIVORE PROCESSES IN ANUPLAND OAK FOREST. Ecology, 1998, 79, 604-61	73.2	37
38	Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540.	1.2	37
39	Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance and Management, 2018, 13, 9.	3.2	37
40	Regional uptake and release of crop carbon in the United States. Biogeosciences, 2011, 8, 2037-2046.	3.3	35
41	Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology. Environmental Research Letters, 2013, 8, 015030.	5.2	34
42	Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences, 2021, 18, 3147-3171.	3.3	32
43	Bias and variance in model results associated with spatial scaling of measurements for parameterization in regional assessments. Global Change Biology, 2006, 12, 516-523.	9.5	31
44	Designing a national soil carbon monitoring network to support climate change policy: a case example for US agricultural lands. Greenhouse Gas Measurement and Management, 2011, 1, 167-178.	0.6	31
45	Soil carbon sequestration rates and associated economic costs for farming systems of south-eastern Australia. Soil Research, 2010, 48, 720.	1.1	29
46	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	3.3	29
47	Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty. Geoderma, 2020, 376, 114529.	5.1	28
48	Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecological Modelling, 2013, 261-262, 19-31.	2.5	27
49	An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO ₂ concentration data. Environmental Research Letters, 2015, 10, 034012.	5.2	27
50	Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy, 2017, 88, 41-52.	4.1	27
51	Evaluation of four modelling approaches to estimate nitrous oxide emissions in China's cropland. Science of the Total Environment, 2019, 652, 1279-1289.	8.0	27
52	Modeling the Impact of Exotic Annual Brome Grasses on soil Organic Carbon Storage in a Northern Mixed-Grass Prairie. Biological Invasions, 2004, 6, 365-377.	2.4	26
53	Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh. Geoderma, 2019, 341, 206-215.	5.1	26
54	Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N ₂ O emissions from nitrogen inputs to managed soils. Global Change Biology, 2021, 27, 6536-6550.	9.5	24

#	Article	IF	CITATIONS
55	Methods for the quantification of GHC emissions at the landscape level for developing countries in smallholder contexts. Environmental Research Letters, 2013, 8, 015019.	5.2	22
56	Evaluation of the CENTURY Model Using Long-Term Fertilization Trials under Corn-Wheat Cropping Systems in the Typical Croplands of China. PLoS ONE, 2014, 9, e95142.	2.5	22
57	Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land, 2018, 7, 82.	2.9	21
58	From research to policy: optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions. Current Opinion in Environmental Sustainability, 2020, 47, 28-36.	6.3	20
59	Building on Paris: integrating nitrous oxide mitigation into future climate policy. Current Opinion in Environmental Sustainability, 2020, 47, 7-12.	6.3	17
60	Improving the social cost of nitrous oxide. Nature Climate Change, 2021, 11, 1008-1010.	18.8	16
61	Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils. Soil Science Society of America Journal, 2016, 80, 1411-1423.	2.2	15
62	DayCent Model Predictions of NPP and Grain Yields for Agricultural Lands in the Contiguous U.S Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005750.	3.0	15
63	A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops. Scientific Data, 2019, 6, 57.	5. 3	13
64	Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 1197-1212.	2.1	12
65	Influence of soil C, N2O and fuel use on GHG mitigation with no-till adoption. Climatic Change, 2012, 111, 609-625.	3.6	11
66	Modeling nitrous oxide mitigation potential of enhanced efficiency nitrogen fertilizers from agricultural systems. Science of the Total Environment, 2021, 801, 149342.	8.0	10
67	Definition, capabilities and components of a terrestrial carbon monitoring system. Carbon Management, 2013, 4, 413-422.	2.4	8
68	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8
69	Use of inverse modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-fed corn production systems. PLoS ONE, 2017, 12, e0172861.	2.5	8
70	Framework for improved confidence in modeled nitrous oxide estimates for biofuel regulatory standards. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 1281-1301.	2.1	8
71	Adaptation in U.S. Corn Belt increases resistance to soil carbon loss with climate change. Scientific Reports, 2020, 10, 13799.	3.3	8
72	Modeling ammonia volatilization from urea application to agricultural soils in the DayCent model. Nutrient Cycling in Agroecosystems, 2021, 119, 259-273.	2.2	8

#	Article	IF	CITATIONS
73	Quantifying Nitrous Oxide Emissions in the U.S. Midwest: A Topâ€Down Study Using High Resolution Airborne Inâ€Situ Observations. Geophysical Research Letters, 2021, 48, e2020GL091266.	4.0	8
74	Land-based emissions. Nature Climate Change, 2021, 11, 382-383.	18.8	8
75	A Phytosociological Study of Exotic Annual Brome Grasses in a Mixed Grass Prairie/Ponderosa Pine Forest Ecotone. American Midland Naturalist, 2002, 147, 25-31.	0.4	7
76	Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region. Ecological Modelling, 2016, 337, 176-187.	2.5	7
77	Semiparametric Mixed Models for Increment-Averaged Data With Application to Carbon Sequestration in Agricultural Soils. Journal of the American Statistical Association, 2007, 102, 803-812.	3.1	6
78	Deforestation and land use change mediate soil carbon changes in the eastern Brazilian Amazon. Regional Environmental Change, 2021, 21, 1.	2.9	6
79	Developing National Baseline GHG Emissions and Analyzing Mitigation Potentials for Agriculture and Forestry Using an Advanced National GHG Inventory Software System. Advances in Agricultural Systems Modeling, 2015, , 129-148.	0.3	5
80	The importance of management information and soil moisture representation for simulating tillage effects on N ₂ O emissions in LPJmL5.0-tillage. Geoscientific Model Development, 2020, 13, 3905-3923.	3.6	5
81	A constrained least-squares approach to combine bottom-up and top-down CO2 flux estimates. Environmental and Ecological Statistics, 2013, 20, 129-146.	3.5	4
82	Yearly Extraction of Central America's Land Cover for Carbon Flux Monitoring. GIScience and Remote Sensing, 2007, 44, 334-355.	5.9	3
83	COMET2.0—Decision Support System for Agricultural Greenhouse Gas Accounting. , 2012, , 251-270.		3
84	Quantification and Decision Support Tools for US Agricultural Soil Carbon Sequestration. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 307-341.	0.4	2
85	Monitoring Soil Natural Capital and Ecosystem Services by Using Large-Scale Survey Data. , 2015, , 127-155.		2
86	Land/Atmosphere/Water Interactions. , 2021, , 245-278.		0
87	Regionalizing crop types to enhance global ecosystem modelling of maize production. Environmental Research Letters, 0, , .	5. 2	0
88	Agricultural systems. , 2022, , 375-402.		0