Li-Wei Hung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/809060/publications.pdf

Version: 2024-02-01

50 papers 34,372 citations

201674

27

h-index

197818 49 g-index

52 all docs 52 docs citations

52 times ranked 43655 citing authors

#	Article	IF	CITATIONS
1	<i>PHENIX</i> : a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 213-221.	2.5	20,564
2	Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in <i>Phenix</i> . Acta Crystallographica Section D: Structural Biology, 2019, 75, 861-877.	2.3	4,060
3	PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1948-1954.	2.5	3,979
4	Iterative model building, structure refinement and density modification with the <i>PHENIX AutoBuild </i> wizard. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 61-69.	2.5	1,319
5	Decision-making in structure solution using Bayesian estimates of map quality: the <i>PHENIX AutoSol</i> Wizard. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 582-601.	2.5	804
6	The Phenix software for automated determination of macromolecular structures. Methods, 2011, 55, 94-106.	3.8	764
7	Protein production and purification. Nature Methods, 2008, 5, 135-146.	19.0	763
8	Automated Structure Solution with the PHENIX Suite. Methods in Molecular Biology, 2008, 426, 419-435.	0.9	492
9	Recent developments in the PHENIX software for automated crystallographic structure determination. Journal of Synchrotron Radiation, 2004, 11, 53-55.	2.4	319
10	Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 515-524.	2.5	165
11	Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Research, 2014, 24, 344-358.	12.0	86
12	Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys Peroxiredoxin. Journal of Molecular Biology, 2005, 346, 1035-1046.	4.2	77
13	Domain Orientation in the Inactive Response RegulatorMycobacterium tuberculosisMtrA Provides a Barrier to Activationâ€,‡. Biochemistry, 2007, 46, 6733-6743.	2.5	76
14	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nature Methods, 2021, 18, 156-164.	19.0	73
15	Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 597-610.	2.5	60
16	Functional and Structural Characterization of a Thiol Peroxidase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2006, 361, 850-863.	4.2	58
17	Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome. Structure, 2015, 23, 1858-1865.	3.3	50
18	Structural basis for DNA recognition by STAT6. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13015-13020.	7.1	46

#	Article	IF	CITATIONS
19	The TB Structural Genomics Consortium: A decade of progress. Tuberculosis, 2011, 91, 155-172.	1.9	39
20	Crystal structure of AcrB complexed with linezolid at 3.5 ${\rm AA}$ resolution. Journal of Structural and Functional Genomics, 2013, 14, 71-75.	1.2	38
21	Structural basis for termination of AlM2-mediated signaling by p202. Cell Research, 2013, 23, 855-858.	12.0	38
22	Structure and Function of Bacillus subtilis YphP, a Prokaryotic Disulfide Isomerase with a CXC Catalytic Motif,. Biochemistry, 2009, 48, 8664-8671.	2.5	37
23	Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 861-870.	2.5	37
24	Model morphing and sequence assignment after molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2244-2250.	2.5	37
25	Structure of <i>Thermotoga maritima </i> TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn < sup > 2+ - binding FCD domains. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 356-365.	2.5	31
26	Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Acta Crystallographica Section D: Structural Biology, 2016, 72, 346-358.	2.3	31
27	Split green fluorescent protein as a modular binding partner for protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2513-2523.	2.5	29
28	Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallographica Section D: Structural Biology, 2016, 72, 359-374.	2.3	29
29	Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei. Journal of Biological Chemistry, 2016, 291, 19387-19400.	3.4	28
30	Mechanism of the Rpn13-induced activation of Uch37. Protein and Cell, 2014, 5, 616-630.	11.0	27
31	S-SAD phasing study of death receptor 6 and its solution conformation revealed by SAXS. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 521-530.	2.5	24
32	An Extracellular Disulfide Bond Forming Protein (DsbF) from Mycobacterium tuberculosis: Structural, Biochemical, and Gene Expression Analysis. Journal of Molecular Biology, 2010, 396, 1211-1226.	4.2	23
33	High short-term and long-term excess mortality in geriatric patients after hip fracture: a prospective cohort study in Taiwan. BMC Musculoskeletal Disorders, 2014, 15, 151.	1.9	21
34	Crystal structure of a putative pyridoxine 5′-phosphate oxidase (Rv2607) from Mycobacterium tuberculosis. Proteins: Structure, Function and Bioinformatics, 2005, 62, 563-569.	2.6	19
35	The influence of renal dialysis and hip fracture sites on the 10-year mortality of elderly hip fracture patients. Medicine (United States), 2017, 96, e7618.	1.0	19
36	Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskeletal Disorders, 2013, 14, 207.	1.9	18

#	Article	IF	CITATIONS
37	Lovastatin Promotes Redifferentiation of Human Nucleus Pulposus Cells During Expansion in Monolayer Culture. Artificial Organs, 2011, 35, 411-416.	1.9	14
38	Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases. Journal of Structural and Functional Genomics, 2009, 10, 291-301.	1,2	13
39	Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 731-734.	0.7	12
40	Structure of Rv1848 (UreA), the Mycobacterium tuberculosisure as \hat{I}^3 subunit. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 781-786.	0.7	10
41	An automated high-throughput screening method for the identification of high-yield, soluble protein variants using cell-free expression and systematic truncation. Journal of Structural and Functional Genomics, 2007, 7, 139-147.	1.2	7
42	Chronic kidney disease predicts a lower probability of improvement in patient-reported experience measures among patients with fractures: a prospective multicenter cohort study. Archives of Osteoporosis, 2018, 13, 126.	2.4	6
43	Subfamily-Specific Adaptations in the Structures of Two Penicillin-Binding Proteins from Mycobacterium tuberculosis. PLoS ONE, 2014, 9, e116249.	2.5	6
44	Time Orientation and Visual Construction Subdomains of the MMSE as Independent Risk Factors for Hip Fractures. Orthopedics, 2013, 36, e869-76.	1.1	6
45	Enhancement of crystallization with nucleotide ligands identified by dye-ligand affinity chromatography. Journal of Structural and Functional Genomics, 2012, 13, 71-79.	1.2	5
46	Construction, characterization and crystal structure of a fluorescent single-chain Fv chimera. Protein Engineering, Design and Selection, 2021, 34, .	2.1	4
47	Automated structure determination with phenix. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 101-109.	0.1	4
48	Teres minor muscle hypertrophy is a negative predictor of outcomes after reverse total shoulder arthroplasty: an evaluation of preoperative magnetic resonance imaging and postoperative implant position. Journal of Shoulder and Elbow Surgery, 2021, 30, e636-e645.	2.6	3
49	BpeB, a major resistance-nodulation-cell division transporter from <i>Burkholderia cenocepacia</i> construct design, crystallization and preliminary structural analysis. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 710-716.	0.8	1
50	Combining Crystallographic and Structure-Modeling Approaches in Macromolecular Crystallography. Biophysical Journal, 2014, 106, 34a.	0.5	0