Janna C Nawroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8090065/publications.pdf

Version: 2024-02-01

23 papers 2,459 citations

394421 19 h-index 24 g-index

28 all docs 28 docs citations

times ranked

28

3778 citing authors

#	Article	IF	CITATIONS
1	A Computational Model for Tail Undulation and Fluid Transport in the Giant Larvacean. Fluids, 2021, 6, 88.	1.7	4
2	Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Reports, 2021, 36, 109393.	6.4	37
3	Effect of swarm configuration on fluid transport during vertical collective motion. Bioinspiration and Biomimetics, 2020, 15, 015002.	2.9	2
4	A Microengineered Airway Lung Chip Models Key Features of Viral-induced Exacerbation of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 591-600.	2.9	75
5	Stem cells and lung regeneration. American Journal of Physiology - Cell Physiology, 2020, 319, C675-C693.	4.6	50
6	Multiscale mechanics of mucociliary clearance in the lung. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190160.	4.0	31
7	Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature Biomedical Engineering, 2020, 4, 407-420.	22.5	256
8	Stem cell-based Lung-on-Chips: The best of both worlds?. Advanced Drug Delivery Reviews, 2019, 140, 12-32.	13.7	52
9	Reproducing human and cross-species drug toxicities using a Liver-Chip. Science Translational Medicine, 2019, 11, .	12.4	287
10	Automated fabrication of photopatterned gelatin hydrogels for organ-on-chips applications. Biofabrication, 2018, 10, 025004.	7.1	48
11	Organâ€onâ€aâ€Chip Systems for Women's Health Applications. Advanced Healthcare Materials, 2018, 7, 1700550.	7.6	31
12	A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nature Biotechnology, 2018, 36, 865-874.	17.5	310
13	Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9510-9516.	7.1	93
14	Laminar ventricular myocardium on a microelectrode array-based chip. Journal of Materials Chemistry B, 2016, 4, 3534-3543.	5.8	60
15	Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell Systems, 2016, 3, 456-466.e4.	6.2	227
16	Cilia beating patterns are not hydrodynamically optimal. Physics of Fluids, 2014, 26, .	4.0	46
17	How Does Soft Robotics Drive Research in Animal Locomotion?. Soft Robotics, 2014, 1, 161-168.	8.0	10
18	Mixing and transport by ciliary carpets: aÂnumerical study. Journal of Fluid Mechanics, 2014, 743, 124-140.	3.4	78

#	Article	IF	CITATIONS
19	Design standards for engineered tissues. Biotechnology Advances, 2013, 31, 632-637.	11.7	11
20	Modeling of cardiac muscle thin films: Pre-stretch, passive and active behavior. Journal of Biomechanics, 2012, 45, 832-841.	2.1	52
21	A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 2012, 30, 792-797.	17.5	536
22	High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity With Microfabricated Electrode Arrays. Journal of Neurophysiology, 2009, 101, 1671-1678.	1.8	67
23	An Energy Budget for the Olfactory Glomerulus. Journal of Neuroscience, 2007, 27, 9790-9800.	3.6	68