Jianzhong He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088752/publications.pdf

Version: 2024-02-01

107	5,759	38	72
papers	citations	h-index	g-index
108	108	108	4516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Partnering of anammox and denitrifying bacteria benefits anammox's recovery from starvation and complete nitrogen removal. Science of the Total Environment, 2022, 815, 152696.	8.0	18
2	Differentiating Closely Affiliated <i>Dehalococcoides</i> Lineages by a Novel Genetic Marker Identified via Computational Pangenome Analysis. Applied and Environmental Microbiology, 2022, 88, AEM0218121.	3.1	3
3	Offshore Marine Sediment Microbiota Respire Structurally Distinct Organohalide Pollutants. Environmental Science & Environmental Science & Environment	10.0	30
4	Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls Catalyzed by a Reductive Dehalogenase in <i>Dehalococcoides mccartyi</i> Strain MB. Environmental Science & Environment	10.0	24
5	Enhanced biobutanol production from starch waste via orange peel doping. Renewable Energy, 2022, 193, 576-583.	8.9	16
6	Efficient and Complete Detoxification of Polybrominated Diphenyl Ethers in Sediments Achieved by Bioaugmentation with <i>Dehalococcoides</i> and Microbial Ecological Insights. Environmental Science & Ecology, 2022, 56, 8008-8019.	10.0	27
7	Diversity of organohalide respiring bacteria and reductive dehalogenases that detoxify polybrominated diphenyl ethers in E-waste recycling sites. ISME Journal, 2022, 16, 2123-2131.	9.8	11
8	Fixed nitrogen removal mechanisms associated with sulfur cycling in tropical wetlands. Water Research, 2021, 189, 116619.	11.3	50
9	Anaerobic biodegradation of phenanthrene by a newly isolated nitrateâ€dependent <i>Achromobacter denitrificans</i> strain <scp>PheN1</scp> and exploration of the biotransformation processes by metabolite and genome analyses. Environmental Microbiology, 2021, 23, 908-923.	3.8	21
10	Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. Environmental Science & Envi	10.0	55
11	Potential Role of Methanogens in Microbial Reductive Dechlorination of Organic Chlorinated Pollutants <i>In Situ</i> Environmental Science & Environme	10.0	41
12	Identification of Reductive Dehalogenases That Mediate Complete Debromination of Penta- and Tetrabrominated Diphenyl Ethers in <i>Dehalococcoides</i> spp Applied and Environmental Microbiology, 2021, 87, e0060221.	3.1	19
13	Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. Journal of Hazardous Materials, 2021, 420, 126630.	12.4	32
14	Debromination of TetraBromoBisphenol-A (TBBPA) depicting the metabolic versatility of Dehalococcoides. Journal of Hazardous Materials, 2021, 419, 126408.	12.4	19
15	Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process. FEMS Microbiology Ecology, 2020, 96, .	2.7	5
16	Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Research, 2020, 185, 116300.	11.3	150
17	Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 543-550.	3.0	15
18	Abundance of organohalide respiring bacteria and their role in dehalogenating antimicrobials in wastewater treatment plants. Water Research, 2020, 181, 115893.	11.3	31

#	Article	IF	CITATIONS
19	Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of Clostridium beijerinckii G117 and recombinant Bacillus subtilis 1A1. Metabolic Engineering Communications, 2020, 11, e00137.	3.6	14
20	<i>Dehalococcoides mccartyi</i> Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. Environmental Science & Environ	10.0	23
21	Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium. Renewable Energy, 2020, 153, 522-529.	8.9	47
22	16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. FEMS Microbiology Ecology, 2020, 96, .	2.7	14
23	Optimization of bioaugmentation of the anaerobic digestion of Axonopus compressus cowgrass for the production of biomethane. Journal of Cleaner Production, 2020, 258, 120932.	9.3	20
24	Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	18
25	Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
26	Editorial: Organohalide Respiration: New Findings in Metabolic Mechanisms and Bioremediation Applications. Frontiers in Microbiology, 2019, 10, 526.	3.5	5
27	Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. Science of the Total Environment, 2019, 666, 368-376.	8.0	66
28	Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Applied Microbiology and Biotechnology, 2019, 103, 1255-1265.	3.6	25
29	Heterologous expression, characterization and application of a new \hat{l}^2 -xylosidase identified in solventogenic Clostridium sp. strain BOH3. Process Biochemistry, 2018, 67, 99-104.	3.7	14
30	Unique genetic cassettes in a <i>Thermoanaerobacterium</i> contribute to simultaneous conversion of cellulose and monosugars into butanol. Science Advances, 2018, 4, e1701475.	10.3	41
31	Strategy for the Rapid Dechlorination of Polychlorinated Biphenyls (PCBs) by <i>Dehalococcoides mccartyi</i> Strains. Environmental Science & Environm	10.0	39
32	Reductive Dechlorination of High Concentrations of Chloroethenes by a Dehalococcoides mccartyi Strain 11 G. FEMS Microbiology Ecology, 2018, 95, .	2.7	11
33	Characterization and genome analysis of a butanol–isopropanol-producing Clostridium beijerinckii strain BGS1. Biotechnology for Biofuels, 2018, 11, 280.	6.2	33
34	Reductive Debromination of Polybrominated Diphenyl Ethers - Microbes, Processes and Dehalogenases. Frontiers in Microbiology, 2018, 9, 1292.	3.5	37
35	Growth of Dehalococcoides mccartyi species in an autotrophic consortium producing limited acetate. Biodegradation, 2018, 29, 487-498.	3.0	11
36	Genomic characterization of <i>Dehalococcoides mccartyi</i> strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. FEMS Microbiology Ecology, 2017, 93, fiw235.	2.7	18

#	Article	IF	CITATIONS
37	Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture. Applied Microbiology and Biotechnology, 2017, 101, 5481-5492.	3.6	12
38	Loss of the <i>ssrA</i> genome island led to partial debromination in the PBDE respiring <i>Dehalococcoides mccartyi</i> strain GY50. Environmental Microbiology, 2017, 19, 2906-2915.	3.8	27
39	Acclimatization of a mixed-animal manure inoculum to the anaerobic digestion of Axonopus compressus reveals the putative importance of Mesotoga infera and Methanosaeta concilii as elucidated by DGGE and Illumina MiSeq. Bioresource Technology, 2017, 245, 1148-1154.	9.6	34
40	Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates. Applied Microbiology and Biotechnology, 2017, 101, 6289-6297.	3.6	6
41	Quantitative proteome profiles help reveal efficient xylose utilization mechanisms in solventogenic <i>Clostridium</i> sp. strain BOH3. Biotechnology and Bioengineering, 2017, 114, 1959-1969.	3.3	5
42	Biological and fermentative production of hydrogen. , 2016, , 303-333.		11
43	The Microbiology of Anaerobic PCB Dechlorination. , 2016, , 541-562.		5
44	Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds. Water Research, 2016, 106, 330-338.	11.3	44
45	Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species. Bioresource Technology, 2016, 219, 430-438.	9.6	18
46	Direct conversion of xylan to butanol by a wildâ€type <i>Clostridium</i> species strain G117. Biotechnology and Bioengineering, 2016, 113, 1702-1710.	3.3	18
47	Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresource Technology, 2016, 202, 214-219.	9.6	37
48	One-pot fermentation of agricultural residues to produce butanol and hydrogen by Clostridium strain BOH3. Renewable Energy, 2016, 85, 1127-1134.	8.9	42
49	Production of 2,3-Butanediol from Sucrose by a Klebsiella Species. Bioenergy Research, 2016, 9, 15-22.	3.9	17
50	Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. Biotechnology for Biofuels, 2015, 8, 166.	6.2	29
51	Instability of dilative sand. Geotechnical Research, 2015, 2, 35-48.	1.4	23
52	Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis. Scientific Reports, 2015, 5, 10521.	3.3	16
53	A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a. Scientific Reports, 2015, 5, 15204.	3.3	18
54	Development of a Fluorescence-Activated Cell Sorting Method Coupled with Whole Genome Amplification To Analyze Minority and Trace <i>Dehalococcoides</i> Communities. Environmental Science & Environme	10.0	14

#	Article	IF	Citations
55	Purification and Characterization of a GH11 Xylanase from Biobutanol-Producing Clostridium beijerinckii G117. Applied Biochemistry and Biotechnology, 2015, 175, 2832-2844.	2.9	6
56	Genomic Characterization of <i>Dehalococcoides mccartyi</i> Strain JNA That Reductively Dechlorinates Tetrachloroethene and Polychlorinated Biphenyls. Environmental Science & Emp; Technology, 2015, 49, 14319-14325.	10.0	32
57	Detoxification of 1,1,2-Trichloroethane to Ethene by Desulfitobacterium and Identification of Its Functional Reductase Gene. PLoS ONE, 2015, 10, e0119507.	2.5	19
58	Draft Genome Sequence of Polychlorinated Biphenyl-Dechlorinating Dehalococcoides mccartyi Strain SG1, Which Carries a Circular Putative Plasmid. Genome Announcements, 2014, 2, .	0.8	6
59	A <scp><i>D</i>, color li> (scp> <i>esulfitobacterium </i> sp. strain <scp>PR</scp> reductively dechlorinates both 1,1,1â€trichloroethane and chloroform. Environmental Microbiology, 2014, 16, 3387-3397.</scp>	3.8	58
60	Production, Purification, and Characterization of \hat{l}_{\pm} -Amylase from Solventogenic Clostridium sp. BOH3. Bioenergy Research, 2014, 7, 132-141.	3.9	10
61	Comparison of microbial communities in sequencing batch reactors (SBRs) exposed to trace erythromycin and erythromycin-H2O. Applied Microbiology and Biotechnology, 2014, 98, 2667-2673.	3.6	8
62	Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. Bioresource Technology, 2014, 154, 38-43.	9.6	37
63	Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol. Biodegradation, 2014, 25, 313-323.	3.0	35
64	Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3. Applied and Environmental Microbiology, 2014, 80, 4771-4778.	3.1	58
65	Genomic characterization of three unique <i>Dehalococcoides</i> that respire on persistent polychlorinated biphenyls. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12103-12108.	7.1	168
66	Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresource Technology, 2014, 155, 220-228.	9.6	55
67	DNA microarrays on ultraviolet-modified surfaces for speciation of bacteria. Analytical Biochemistry, 2014, 447, 156-161.	2.4	3
68	A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3. Bioenergy Research, 2013, 6, 240-251.	3.9	23
69	Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresource Technology, 2013, 139, 5-12.	9.6	56
70	Dechlorination of Commercial PCBs and Other Multiple Halogenated Compounds by a Sediment-Free Culture ContainingDehalococcoidesandDehalobacter. Environmental Science & Enviro	10.0	42
71	Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresource Technology, 2013, 135, 309-315.	9.6	72
72	Characterization of a butanol–acetone-producing Clostridium strain and identification of its solventogenic genes. Bioresource Technology, 2013, 135, 372-378.	9.6	38

#	Article	IF	Citations
73	Isolation of two new <i><scp>D</scp>ehalococcoides mccartyi</i> strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environmental Microbiology, 2013, 15, 2293-2305.	3.8	41
74	Production, Purification, and Characterization of a Xylooligosaccharides-forming Xylanase from High-butanol-producing Strain Clostridium sp. BOH3. Bioenergy Research, 2013, 6, 448-457.	3.9	21
75	Isolation of Acetobacterium sp. Strain AG, Which Reductively Debrominates Octa- and Pentabrominated Diphenyl Ether Technical Mixtures. Applied and Environmental Microbiology, 2013, 79, 1110-1117.	3.1	51
76	Phylogenetically Distinct Bacteria Involve Extensive Dechlorination of Aroclor 1260 in Sediment-Free Cultures. PLoS ONE, 2013, 8, e59178.	2.5	57
77	Draft Genome Sequence of Butanol-Acetone-Producing Clostridium beijerinckii Strain G117. Journal of Bacteriology, 2012, 194, 5470-5471.	2.2	19
78	Two-step denaturing gradient gel electrophoresis (2S-DGGE), a gel-based strategy to capture full-length 16S rRNA gene sequences. Applied Microbiology and Biotechnology, 2012, 95, 1305-1312.	3.6	10
79	Oligopeptides functionalized surface plasmon resonance biosensors for detecting thiacloprid and imidacloprid. Biosensors and Bioelectronics, 2012, 35, 271-276.	10.1	30
80	Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microbial Biotechnology, 2012, 5, 347-367.	4.2	29
81	Complete Debromination of Tetra- and Penta-Brominated Diphenyl Ethers by a Coculture Consisting of <i>Dehalococcoides</i> and <i>Desulfovibrio</i> Species. Environmental Science & Environmental Scie	10.0	70
82	Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O. Water Research, 2011, 45, 3098-3106.	11.3	44
83	Separation of fluorescenceâ€labelled terminal restriction fragment DNA on a twoâ€dimensional gel (Tâ€RFsâ€2D) – an efficient approach for microbial consortium characterization. Environmental Microbiology, 2011, 13, 2565-2575.	3.8	8
84	Comparative genomics of two newly isolated <i>Dehalococcoides</i> strains and an enrichment using a genus microarray. ISME Journal, 2011, 5, 1014-1024.	9.8	54
85	A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresource Technology, 2011, 102, 9558-9563.	9.6	50
86	Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 2010, 87, 925-941.	3 . 6	358
87	Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR). Biochemical Engineering Journal, 2010, 49, 119-125.	3.6	24
88	A <i>Dehalococcoides</i> -containing co-culture that dechlorinates tetrachloroethene to <i>trans</i> -1,2-dichloroethene. ISME Journal, 2010, 4, 88-97.	9.8	40
89	Identification and transcriptional analysis of <i>trans</i> -DCE-producing reductive dehalogenases in <i>Dehalococcoides</i> species. ISME Journal, 2010, 4, 1020-1030.	9.8	76
90	Reductive Debromination of Polybrominated Diphenyl Ethers by Anaerobic Bacteria from Soils and Sediments. Applied and Environmental Microbiology, 2010, 76, 794-802.	3.1	123

#	Article	IF	Citations
91	Determination of Total Nitrogen in Environmental Samples: Validation by Comparison of Techniques and Intralaboratory Studies. Analytical Letters, 2009, 42, 948-957.	1.8	0
92	Isolation and Characterization of " <i>Dehalococcoides</i> ―sp. Strain MB, Which Dechlorinates Tetrachloroethene to <i>trans</i> -1,2-Dichloroethene. Applied and Environmental Microbiology, 2009, 75, 5910-5918.	3.1	116
93	Evidence for Nitrogen Fixation by " <i>Dehalococcoides ethenogenes</i> ―Strain 195. Applied and Environmental Microbiology, 2009, 75, 7551-7555.	3.1	30
94	Influence of trace erythromycin and erythromycin-H2O on carbon and nutrients removal and on resistance selection in sequencing batch reactors (SBRs). Applied Microbiology and Biotechnology, 2009, 85, 185-195.	3.6	21
95	Phthalates biodegradation in the environment. Applied Microbiology and Biotechnology, 2008, 80, 183-98.	3.6	336
96	Acidogenic sequencing batch reactor start-up procedures for induction of 2,4,6-trichlorophenol dechlorination. Water Research, 2008, 42, 1675-1683.	11.3	21
97	Pentachlorophenol dechlorination by an acidogenic sludge. Water Research, 2008, 42, 3789-3798.	11.3	28
98	Evaluation of Biodegradation Potential of Carbon Tetrachloride and Chlorophenols under Acidogenic Condition. Journal of Environmental Engineering, ASCE, 2008, 134, 177-183.	1.4	8
99	Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium. Applied and Environmental Microbiology, 2007, 73, 2847-2853.	3.1	182
100	Microbial Reductive Debromination of Polybrominated Diphenyl Ethers (PBDEs). Environmental Science & Environmental Science & PBDEs (PBDEs). Environmental Science & PBDEs (PBDEs).	10.0	308
101	Reductive Dehalogenase Gene Expression as a Biomarker for Physiological Activity of Dehalococcoides spp. Applied and Environmental Microbiology, 2006, 72, 6161-6168.	3.1	100
102	Discrimination of Multiple Dehalococcoides Strains in a Trichloroethene Enrichment by Quantification of Their Reductive Dehalogenase Genes. Applied and Environmental Microbiology, 2006, 72, 5877-5883.	3.1	132
103	Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 2005, 7, 1442-1450.	3.8	237
104	Phospholipid Furan Fatty Acids and Ubiquinone-8: Lipid Biomarkers That May Protect Dehalococcoides Strains from Free Radicals. Applied and Environmental Microbiology, 2005, 71, 8426-8433.	3.1	45
105	Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 2003, 424, 62-65.	27.8	461
106	Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species. Applied and Environmental Microbiology, 2003, 69, 996-1003.	3.1	324
107	Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sitesâ€. Environmental Science & Samp; Technology, 2002, 36, 3945-3952.	10.0	190