Georgios Kyriacou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8088726/publications.pdf

Version: 2024-02-01

331670 330143 2,108 37 21 37 h-index citations g-index papers 37 37 37 2632 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, , 1673-1674.	4.1	392
2	Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Research, 2008, 42, 386-394.	11.3	264
3	Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochimica Acta, 2006, 52, 1329-1338.	5.2	163
4	Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochimica Acta, 2007, 52, 6412-6420.	5.2	114
5	Electrochemical reduction of nitrate ion on various cathodes? reaction kinetics on bronze cathode. Journal of Applied Electrochemistry, 2005, 35, 421-427.	2.9	111
6	Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochimica Acta, 2012, 78, 171-176.	5.2	110
7	Influence of nitrate concentration on its electrochemical reduction on tin cathode: Identification of reaction intermediates. Electrochimica Acta, 2008, 53, 5477-5484.	5.2	109
8	Electroreduction of CO2 on differently prepared copper electrodes. Journal of Electroanalytical Chemistry, 1992, 322, 233-246.	3.8	101
9	Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes. Journal of Hazardous Materials, 2009, 171, 323-327.	12.4	93
10	Electrochemical reduction of nitrate on bismuth cathodes. Journal of Electroanalytical Chemistry, 2009, 630, 69-74.	3.8	66
11	Electrochemical reduction of CO2 at Cu + Au electrodes. Journal of Electroanalytical Chemistry, 1992, 328, 233-243.	3.8	55
12	Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochimica Acta, 2005, 50, 5237-5241.	5.2	52
13	Co-metabolism of 2,4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. Journal of Hazardous Materials, 2009, 163, 383-390.	12.4	48
14	Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate. Environmental Technology (United Kingdom), 2013, 34, 373-381.	2.2	48
15	Electrochemical reduction of dichloromethane to higher hydrocarbons. Journal of Applied Electrochemistry, 1998, 28, 613-616.	2.9	43
16	Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. Journal of Applied Electrochemistry, 1993, 23, 483-486.	2.9	39
17	Reaction pathways in the electrochemical reduction of nitrate on tin. Electrochimica Acta, 2012, 71, 270-276.	5.2	35
18	Electrochemical reduction of dichlorodifluoromethane in acetonitrile medium to useful fluorinated compounds. Journal of Electroanalytical Chemistry, 1999, 471, 26-31.	3.8	30

#	Article	IF	CITATIONS
19	Determination of naturally occurring hydroxynaphthoquinone polymers by size-exclusion chromatography. Chromatographia, 2002, 55, 423-430.	1.3	27
20	Electrochemical removal of nitrate from the spent regenerant solution of the ion exchange. Desalination, 2009, 248, 923-930.	8.2	26
21	Electrochemical reduction of dichlorodifluoromethane on silver and lead electrodes. Journal of Applied Electrochemistry, 2001, 31, 207-212.	2.9	24
22	Analytical characterization of artist's paint systems based on emulsion polymers and synthetic organic pigments. Journal of Analytical and Applied Pyrolysis, 2018, 135, 231-241.	5.5	21
23	Photocatalytic Degradation of p-Coumaric Acid over TiO2Suspensions. Environmental Technology (United Kingdom), 2002, 23, 179-187.	2.2	19
24	Electrochemical reduction of CCl2F2 on Nafion solid polymer electrolyte composite electrodes. Chemical Communications, 1998, , 1693-1694.	4.1	15
25	The electrochemical oxidation of tetrahydrofuran in sulphuric acid solution. Electrochimica Acta, 1999, 44, 3295-3301.	5.2	15
26	Effect of season on fatty acid and terpene profiles of milk from Greek sheep raised under a semi-extensive production system. Journal of Dairy Research, 2016, 83, 375-382.	1.4	15
27	A novel methodological approach for the assessment of surface cleaning of acrylic emulsion paints. Microchemical Journal, 2018, 141, 25-39.	4.5	13
28	A comparative study of the fatty acid and terpene profiles of ovine and caprine milk from Greek mountain sheep breeds and a local goat breed raised under a semi-extensive production system. Food Chemistry, 2019, 278, 625-629.	8.2	11
29	Heterogeneous photocatalytic degradation of the cationic surfactant dodecylpyridinum chloride. Applied Catalysis B: Environmental, 1993, 2, 289-302.	20.2	10
30	Electrochemical reduction of dichlorodifluoromethane at a Nafion $\hat{A}^{@}$ solid polymer electrolyte cell. Journal of Electroanalytical Chemistry, 2000, 480, 249-254.	3.8	9
31	Electrochemical Reduction of Formic Acid on a Copper-Tin-Lead Cathode. The Open Electrochemistry Journal, 2014, 5, 8-12.	0.5	9
32	Electrochemical reduction of formic acid through its decarbonylation in phosphoric acid solution. Electrochimica Acta, 2016, 210, 236-239.	5.2	8
33	Electrochemical removal of bromate from drinking water. Desalination and Water Treatment, 2013, 51, 2889-2894.	1.0	5
34	Conversion of carbon dioxide to methanol through the reduction of formic acid on chromium. Journal of Chemical Technology and Biotechnology, 2017, 92, 1794-1800.	3.2	4
35	A preliminary study on the physicochemical properties of pigmented Sty/nBA/MMA emulsion films: The effect of thermal ageing. Polymer Degradation and Stability, 2018, 158, 157-167.	5.8	2
36	Quantitative Determination of Hyponitrite and Hyponitrate by Ion Chromatography. Chromatographia, 2009, 70, 315-317.	1.3	1

#	Article	IF	CITATIONS
37	One step preparation of ZnFe2O4/Zn5(OH)6(CO3)2 nanocomposite with improved As(V) removal capacity. Separation Science and Technology, 2018, 53, 1457-1464.	2.5	1