List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8087992/publications.pdf Version: 2024-02-01

LIVANC FAN

#	Article	IF	CITATIONS
1	Origin of proton induced fluorescence quenching of colloidal carbon dots: reshaping of SchrA¶dinger wavefunctions and huge red shift of transition energy. Nanotechnology, 2022, 33, 205503.	2.6	3
2	One-Center and Two-Center Self-Trapped Excitons in Zero-Dimensional Hybrid Copper Halides: Tricolor Luminescence with High Quantum Yields. Journal of Physical Chemistry Letters, 2022, 13, 1373-1381.	4.6	11
3	Native surface oxidation yields SiC-SiO2 core-shell quantum dots with improved quantum efficiency. Journal of Chemical Physics, 2022, 156, 094705.	3.0	0
4	Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from <i>In Situ</i> Laser-Induced CsPbBr ₃ Quantum Dots in CsPb ₂ Br ₅ Microcavities. Nano Letters, 2022, 22, 355-365.	9.1	17
5	Resonant defect recombination-localized surface plasmon energy transfer and exciton dominated fluorescence in ZnO–Au–ZnO multi-interfaced heteronanocrystals. Journal of Chemical Physics, 2022, 156, 174705.	3.0	1
6	Strong fluorescence quenching of carbon dots by mercury(II) ions: Ground-state electron transfer and diminished oscillator strength. Diamond and Related Materials, 2022, 126, 109076.	3.9	5
7	Cooccurrence of pH-sensitive shifting blue and immobile green triple surface-state fluorescence in ultrasmall super body-centered cubic carbon quantum dots. Nanotechnology, 2022, 33, 385704.	2.6	2
8	Role of Octahedron Alloying in Photodynamics of Leadâ€Free Halide Double Perovskite Nanoplatelets. Advanced Optical Materials, 2022, 10, .	7.3	9
9	Luminescent Photonic Crystals with Extremeâ€UV Bandgaps Made of CuInSe 2 Quantum Dots. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000757.	1.8	1
10	Core and Surface Electronic States and Phonon Modes in SiC Quantum Dots Studied by Optical Spectroscopy and Hybrid TDDFT. Journal of Physical Chemistry C, 2021, 125, 7259-7266.	3.1	4
11	Stability of the structure and redox state of ferricytochrome c in the desolvation process. Vibrational Spectroscopy, 2021, 113, 103220.	2.2	0
12	Experimental evidences of defect luminescence spanning red to near-infrared in strongly quantum confined sub-4Ânm CuInSe ₂ quantum dots approaching crystallization limit. Applied Physics Express, 2021, 14, 075001.	2.4	2
13	Role of Polyhedron Unit in Distinct Photophysics of Zero-Dimensional Organic–Inorganic Hybrid Tin Halide Compounds. Journal of Physical Chemistry Letters, 2021, 12, 5765-5773.	4.6	10
14	<i>In Situ</i> Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr ₃ –CsPb ₂ Br ₅ Core–Shell Perovskite Nanocrystals. Chemistry of Materials, 2021, 33, 4948-4959.	6.7	47
15	Green–white color switchable light-emitting devices based on laterally fused cesium lead bromide perovskite nanowires. Applied Physics Letters, 2021, 119, .	3.3	2
16	Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene) Tj ETQq0 0 using ethanol and potassium hydroxide. Carbon, 2021, 179, 133-141.	0 rgBT /Ove 10.3	erlock 10 Tf 50 17
17	Influence of crystallization temperature on fluorescence of n-diamond quantum dots. Nanotechnology, 2020, 31, 505712.	2.6	11
18	Sensing: Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970070.	3.7	0

2

#	Article	IF	CITATIONS
19	Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation. Advanced Materials Interfaces, 2019, 6, 1900272.	3.7	3
20	Quantitative Modeling of Self-Assembly Growth of Luminescent Colloidal CH ₃ NH ₃ PbBr ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 13110-13121.	3.1	16
21	Interaction between indium tin oxide nanoparticles and ferricytochrome c: Conformation, redox state, and adsorption scheme. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 64-72.	3.9	3
22	Critical Roles of High- and Low-Frequency Optical Phonons in Photodynamics of Zero-Dimensional Perovskite-like (C ₆ H ₂₂ N ₄ Cl ₃)SnCl ₃ Crystals. Journal of Physical Chemistry Letters, 2019, 10, 7586-7593.	4.6	28
23	Carrier accumulation enhanced Auger recombination and inner self-heating-induced spectrum fluctuation in CsPbBr3 perovskite nanocrystal light-emitting devices. Applied Physics Letters, 2019, 115,	3.3	15
24	Quantum confinement luminescence of trigonal cesium lead bromide quantum dots. Applied Surface Science, 2019, 466, 119-125.	6.1	22
25	Luminescence Properties of ZnO Twin Nanorod–Ag Heteronanocrystals and Interfacial Exciton–Surface Plasmon Coupling (Phys. Status Solidi RRL 2/2018). Physica Status Solidi - Rapid Research Letters, 2018, 12, 1870306.	2.4	0
26	Luminescence Properties of ZnO Twin Nanorod–Ag Heteronanocrystals and Interfacial Exciton–Surface Plasmon Coupling. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700375.	2.4	1
27	Quasi-self-trapped Frenkel-exciton near-UV luminescence with large Stokes shift in wide-bandgap Cs4PbCl6 nanocrystals. Applied Physics Letters, 2018, 112, .	3.3	24
28	Quasi-White Light-Emitting Devices Based on SiC Quantum Dots. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800171.	2.4	6
29	Analytical model of photon reabsorption in ZnO quantum dots with size and concentration dependent dual-color photoluminescence. Journal of Applied Physics, 2017, 121, .	2.5	10
30	Hydrothermal synthesis of well crystallized C ₈ and diamond nanocrystals and pH-controlled C ₈ ↔ diamond phase transition. CrystEngComm, 2017, 19, 1248-1252.	2.6	17
31	Quantum confinement effect in 6H-SiC quantum dots observed via plasmon–exciton coupling-induced defect-luminescence quenching. Applied Physics Letters, 2017, 110, .	3.3	12
32	Cs/CsPbX3 (X = Br, Cl) epitaxial heteronanocrystals with magic-angle stable/metastable grain boundary. Applied Physics Letters, 2017, 110, .	3.3	7
33	Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices. APL Materials, 2016, 4, .	5.1	5
34	Optical spectroscopy reveals transition of CuInS2/ZnS to CuxZn1â^'xInS2/ZnS:Cu alloyed quantum dots with resultant double-defect luminescence. APL Materials, 2016, 4, .	5.1	13
35	Photon absorption and emission properties of 7 à SiC nanoclusters: Electronic gap, surface state, and quantum size effect. Applied Physics Letters, 2016, 109, .	3.3	12
36	Universal role of oxygen in full-visible-region photoluminescence of diamond nanocrystals. Carbon, 2016, 109, 40-48.	10.3	16

#	Article	IF	CITATIONS
37	Multistage growth of monocrystalline ZnO nanowires and twin-nanorods: oriented attachment and role of the spontaneous polarization force. CrystEngComm, 2016, 18, 6492-6501.	2.6	36
38	Identification of luminescent surface defect in SiC quantum dots. Applied Physics Letters, 2015, 106, .	3.3	33
39	Interaction between indium tin oxide nanoparticles and cytochrome <i>c</i> : A surface-enhanced Raman scattering and absorption spectroscopic study. Journal of Applied Physics, 2015, 117, .	2.5	8
40	Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence. Applied Physics Letters, 2014, 105, .	3.3	22
41	General Properties of Bulk SiC. Engineering Materials and Processes, 2014, , 7-114.	0.4	11
42	SiC Nanostructured Films. Engineering Materials and Processes, 2014, , 295-315.	0.4	2
43	Surface-enhanced Raman spectroscopy on transparent fume-etched ITO-glass surface. Applied Surface Science, 2014, 309, 250-254.	6.1	8
44	Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption. Applied Physics Letters, 2014, 104, .	3.3	86
45	SiC Nanotubes. Engineering Materials and Processes, 2014, , 271-294.	0.4	1
46	Porous SiC. Engineering Materials and Processes, 2014, , 115-130.	0.4	0
47	Biological Applications. Engineering Materials and Processes, 2014, , 317-330.	0.4	0
48	Silicon Carbide Nanostructures. Engineering Materials and Processes, 2014, , .	0.4	63
49	C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects. Carbon, 2014, 79, 165-173.	10.3	67
50	SiC Nanowires. Engineering Materials and Processes, 2014, , 195-269.	0.4	0
51	Synthesis and photoluminescence of semiconductor quantum dots/cetyltrimethylammonium bromide vesicle core/shell nanostructures. Applied Surface Science, 2013, 276, 359-362.	6.1	5
52	Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton–metal surface plasmon coupling. Nanotechnology, 2013, 24, 025201.	2.6	18
53	Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Applied Physics Letters, 2012, 101, .	3.3	68
54	Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles. Applied Surface Science, 2012, 258, 10140-10143.	6.1	4

#	Article	IF	CITATIONS
55	Interference effects on indium tin oxide enhanced Raman scattering. Journal of Applied Physics, 2012, 111, .	2.5	9
56	Photoluminescence and light reabsorption in SiC quantum dots embedded in binary-polyelectrolyte solid matrix. Journal of Applied Physics, 2012, 112, .	2.5	9
57	Highly bright tunable blue-violet photoluminescence in SiC nanocrystal–sodium dodecyl sulfonate crosslinked network. Nanoscale, 2012, 4, 3044.	5.6	18
58	Identification of the reconstruction and bonding structure of SiC nanocrystal surface by infrared spectroscopy. Applied Surface Science, 2011, 258, 627-630.	6.1	14
59	Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates. AIP Advances, 2011, 1, .	1.3	0
60	Synthesis and luminescence properties of silica-coated cubic silicon carbide nanocrystal composites. Micro and Nano Letters, 2011, 6, 878.	1.3	4
61	Analysis of the random disturbance in transmission intensity for Lippich prisms. Optik, 2011, 122, 1615-1618.	2.9	1
62	UV-blue photoluminescence from close-packed SiC nanocrystal film. Applied Physics Letters, 2011, 98, .	3.3	18
63	Group IV Nanoparticles: Synthesis, Properties, and Biological Applications. Small, 2010, 6, 2080-2098.	10.0	264
64	Excitation and recombination photodynamics in colloidal cubic SiC nanocrystals. Applied Physics Letters, 2010, 97, .	3.3	17
65	æ¼å°ï¼æ± 8 §†é€Šå剿£±é•œé€å°"谱扰动ä¼~åŒ−ç"ç©¶. Chinese Optics Letters, 2010, 8, 428.	2.9	5
66	The influence of the shell on magnetic properties of CdS: Mn/SiO2 composite nanoparticles. Applied Physics A: Materials Science and Processing, 2009, 97, 277-280.	2.3	2
67	Microstructure and infrared spectral properties of porous polycrystalline and nanocrystalline cubic silicon carbide. Applied Physics Letters, 2009, 95, 021906.	3.3	25
68	3C–SiC Nanocrystals as Fluorescent Biological Labels. Small, 2008, 4, 1058-1062.	10.0	165
69	Transmission intensity disturbance in a rotating polarizer. Optics Communications, 2008, 281, 197-201.	2.1	3
70	Synthesis and low-temperature photoluminescence properties of SnO2nanowires and nanobelts. Nanotechnology, 2006, 17, 1695-1699.	2.6	228
71	Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Applied Physics Letters, 2006, 88, 041909.	3.3	76
72	Stability of luminescent 3C-SiC nanocrystallites in aqueous solution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 360, 336-338.	2.1	31

#	Article	IF	CITATIONS
73	Si-based solid blue emitters from 3C-SiC nanocrystals. Applied Physics A: Materials Science and Processing, 2006, 82, 485-487.	2.3	10
74	Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Progress in Materials Science, 2006, 51, 983-1031.	32.8	312
75	Enhanced and tunable blue luminescence from CdS nanocrystal–polymer composites. Scripta Materialia, 2006, 55, 1123-1126.	5.2	25
76	Luminescent amorphous alumina nanoparticles in toluene solution. Journal of Physics Condensed Matter, 2006, 18, 9937-9942.	1.8	13
77	Vacuum electron field emission from SnO2 nanowhiskers annealed in N2 and O2 atmospheres. Applied Physics Letters, 2006, 88, 013109.	3.3	29
78	Mo-containing diamond-like carbon films with blue emission. Journal of Crystal Growth, 2005, 281, 538-542.	1.5	4
79	Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Physical Review Letters, 2005, 94, 026102.	7.8	288
80	Luminescent silicon carbide nanocrystallites in 3C-SiCâ^•polystyrene films. Applied Physics Letters, 2005, 86, 171903.	3.3	38
81	A study on transmitted intensity of disturbance for air-spaced Glan-type polarizing prisms. Optics Communications, 2003, 223, 11-16.	2.1	9