
## Emilio José Vega RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086587/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Unexpected stability of micrometer weakly viscoelastic jets. Physics of Fluids, 2022, 34, .                                                                              | 4.0 | 4         |
| 2  | Viscoelastic transition in transonic flow focusing. Physical Review Fluids, 2022, 7, .                                                                                   | 2.5 | 3         |
| 3  | Fire-Shaped Nozzles to Produce a Stress Peak for Deformability Studies. Polymers, 2022, 14, 2784.                                                                        | 4.5 | 1         |
| 4  | Electrical Conductivity of a Stretching Viscoelastic Filament. Materials, 2021, 14, 1294.                                                                                | 2.9 | 1         |
| 5  | Blood Particulate Analogue Fluids: A Review. Materials, 2021, 14, 2451.                                                                                                  | 2.9 | 20        |
| 6  | Experimental Analysis of the Extensional Flow of Very Weakly Viscoelastic Polymer Solutions.<br>Materials, 2020, 13, 192.                                                | 2.9 | 7         |
| 7  | Fast, flexible and low-cost multiphase blood analogue for biomedical and energy applications.<br>Experiments in Fluids, 2020, 61, 1.                                     | 2.4 | 14        |
| 8  | Breakup of an electrified viscoelastic liquid bridge. Physical Review E, 2020, 102, 033103.                                                                              | 2.1 | 6         |
| 9  | A simple emulsification technique for the production of micro-sized flexible powder of polydimethylsiloxane (PDMS). Powder Technology, 2020, 366, 610-616.               | 4.2 | 12        |
| 10 | Gaseous flow focusing for spinning micro and nanofibers. Polymer, 2019, 178, 121623.                                                                                     | 3.8 | 12        |
| 11 | Fire-shaped cylindrical glass micronozzles to measure cell deformability. Journal of Micromechanics and Microengineering, 2019, 29, 105001.                              | 2.6 | 9         |
| 12 | Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mechanics Research<br>Communications, 2019, 100, 103399.                                | 1.8 | 29        |
| 13 | Magnetic PDMS Microparticles for Biomedical and Energy Applications. Lecture Notes in Computational Vision and Biomechanics, 2019, , 578-584.                            | 0.5 | 2         |
| 14 | Complex behavior very close to the pinching of a liquid free surface. Physical Review Fluids, 2019, 4, .                                                                 | 2.5 | 10        |
| 15 | Shrinkage and colour in the production of micro-sized PDMS particles for microfluidic applications.<br>Journal of Micromechanics and Microengineering, 2018, 28, 075002. | 2.6 | 13        |
| 16 | Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields. Journal of<br>Colloid and Interface Science, 2018, 513, 409-417.                 | 9.4 | 9         |
| 17 | Influence of the Surface Viscosity on the Breakup of a Surfactant-Laden Drop. Physical Review Letters, 2017, 118, 024501.                                                | 7.8 | 49        |
| 18 | Suppressing prompt splash with polymer additives. Experiments in Fluids, 2017, 58, 1.                                                                                    | 2.4 | 25        |

## Emilio José Vega RodrÃgue

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Smooth printing of viscoelastic microfilms with a flow focusing ejector. Journal of Non-Newtonian<br>Fluid Mechanics, 2017, 249, 1-7.                                                              | 2.4 | 10        |
| 20 | Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions.<br>Rheologica Acta, 2017, 56, 11-20.                                                                 | 2.4 | 57        |
| 21 | The effects of ambient impurities on the surface tension. EPJ Web of Conferences, 2016, 114, 02098.                                                                                                | 0.3 | 8         |
| 22 | Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics, 2016, 10, 014122.                                                       | 2.4 | 34        |
| 23 | Effects of surface-active impurities on the liquid bridge dynamics. Experiments in Fluids, 2016, 57, 1.                                                                                            | 2.4 | 15        |
| 24 | The production of viscoelastic capillary jets with gaseous flow focusing. Journal of Non-Newtonian<br>Fluid Mechanics, 2016, 229, 8-15.                                                            | 2.4 | 13        |
| 25 | Dynamics of an axisymmetric liquid bridge close to the minimum-volume stability limit. Physical Review<br>E, 2014, 90, 013015.                                                                     | 2.1 | 22        |
| 26 | A novel technique to produce metallic microdrops for additive manufacturing. International Journal of Advanced Manufacturing Technology, 2014, 70, 1395-1402.                                      | 3.0 | 22        |
| 27 | An experimental technique to produce micrometer waves on a cylindrical sub-millimeter free surface.<br>Measurement Science and Technology, 2014, 25, 075303.                                       | 2.6 | 2         |
| 28 | Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers. Physical Review E, 2014, 89, 063012.                                               | 2.1 | 12        |
| 29 | A new flow focusing technique to produce very thin jets. Journal of Micromechanics and Microengineering, 2013, 23, 065009.                                                                         | 2.6 | 26        |
| 30 | A novel technique for producing metallic microjets and microdrops. Microfluidics and Nanofluidics, 2013, 14, 101-111.                                                                              | 2.2 | 13        |
| 31 | An experimental setup for the study of the steady air flow in a diesel engine chamber. EPJ Web of Conferences, 2012, 25, 01014.                                                                    | 0.3 | 1         |
| 32 | Numerical simulation of electrospray in the cone-jet mode. Physical Review E, 2012, 86, 026305.                                                                                                    | 2.1 | 75        |
| 33 | An experimental technique to measure the capillary waves in electrified microjets. EPJ Web of Conferences, 2012, 25, 01097.                                                                        | 0.3 | 0         |
| 34 | Exploring the precision of backlight optical imaging in microfluidics close to the diffraction limit.<br>Measurement: Journal of the International Measurement Confederation, 2011, 44, 1300-1311. | 5.0 | 27        |
| 35 | On the validity of a universal solution for viscous capillary jets. Physics of Fluids, 2011, 23, .                                                                                                 | 4.0 | 15        |
| 36 | Numerical simulation of a liquid bridge in a coaxial gas flow. Physics of Fluids, 2011, 23, .                                                                                                      | 4.0 | 24        |

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 2010, 22, .                                                         | 4.0 | 72        |
| 38 | Micrometer glass nozzles for flow focusing. Journal of Micromechanics and Microengineering, 2010, 20, 075035.                                                        | 2.6 | 22        |
| 39 | Damping of linear oscillations in axisymmetric liquid bridges. Physics of Fluids, 2009, 21, .                                                                        | 4.0 | 17        |
| 40 | On the precision of optical imaging to study free surface dynamics at high frame rates. Experiments in Fluids, 2009, 47, 251-261.                                    | 2.4 | 19        |
| 41 | Sub-micrometer precision of optical imaging to locate the free surface of a micrometer fluid shape.<br>Journal of Colloid and Interface Science, 2009, 339, 271-274. | 9.4 | 8         |