Janey L Wiggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8086239/publications.pdf

Version: 2024-02-01

202 papers 11,617 citations

28274 55 h-index 95 g-index

223 all docs 223 docs citations

times ranked

223

10360 citing authors

#	Article	IF	CITATIONS
1	Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nature Genetics, 2012, 44, 642-650.	21.4	511
2	Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature Genetics, 2002, 30, 81-85.	21.4	427
3	Primary open-angle glaucoma. Nature Reviews Disease Primers, 2016, 2, 16067.	30.5	319
4	A simple procedure for resolution of Escherichia coli RNA polymerase holoenzyme from core polymerase. Archives of Biochemistry and Biophysics, 1977, 182, 404-408.	3.0	315
5	Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654.	3.5	276
6	Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nature Genetics, 2013, 45, 155-163.	21.4	269
7	Genetics of glaucoma. Human Molecular Genetics, 2017, 26, R21-R27.	2.9	266
8	Prediction of the Risk of Hereditary Retinoblastoma, Using DNA Polymorphisms within the Retinoblastoma Gene. New England Journal of Medicine, 1988, 318, 151-157.	27.0	249
9	Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ, The, 2014, 348, g1610-g1610.	6.0	229
10	Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genetics in Medicine, 2015, 17, 253-261.	2.4	216
11	Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nature Genetics, 2018, 50, 778-782.	21.4	214
12	Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nature Genetics, 2014, 46, 1126-1130.	21.4	212
13	Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nature Genetics, 2016, 48, 189-194.	21.4	211
14	Prevalence of Mutations in TIGR/Myocilin in Patients with Adult and Juvenile Primary Open-Angle Glaucoma. American Journal of Human Genetics, 1998, 63, 1549-1552.	6.2	197
15	Genetic Etiologies of Glaucoma. JAMA Ophthalmology, 2007, 125, 30.	2.4	196
16	Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nature Communications, 2021, 12, 1258.	12.8	196
17	Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nature Genetics, 2020, 52, 160-166.	21.4	192
18	Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nature Genetics, 2014, 46, 1120-1125.	21.4	186

#	Article	IF	CITATIONS
19	Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. Journal of Clinical Investigation, 2016, 126, 2575-2587.	8.2	175
20	Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Human Molecular Genetics, 2011, 20, 4707-4713.	2.9	156
21	The gene, environment association studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genetic Epidemiology, 2010, 34, 364-372.	1.3	139
22	Glaucoma: genes, phenotypes, and new directions for therapy. Journal of Clinical Investigation, 2010, 120, 3064-3072.	8.2	121
23	New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics Human Molecular Genetics, 2017, 26, ddw399.	2.9	120
24	Distribution of WDR36DNA Sequence Variants in Patients with Primary Open-Angle Glaucoma., 2006, 47, 2542.		114
25	Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature Genetics, 2017, 49, 993-1004.	21.4	114
26	Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Human Molecular Genetics, 2018, 27, 1486-1496.	2.9	111
27	Genetic Variants Associated with Optic Nerve Vertical Cup-to-Disc Ratio Are Risk Factors for Primary Open Angle Glaucoma in a US Caucasian Population. , 2011, 52, 1788.		109
28	Endothelial Nitric Oxide Synthase Gene Variants and Primary Open-Angle Glaucoma: Interactions with Sex and Postmenopausal Hormone Use., 2010, 51, 971.		107
29	DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity. BMC Medical Genetics, 2008, 9, 5.	2.1	105
30	Geographic and Climatic Factors Associated With Exfoliation Syndrome. JAMA Ophthalmology, 2011, 129, 1053.	2.4	105
31	A common variant near TGFBR3 is associated with primary open angle glaucoma. Human Molecular Genetics, 2015, 24, 3880-3892.	2.9	105
32	Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of Human Genetics, 2015, 96, 487-497.	6.2	101
33	A Genomewide Scan Identifies Novel Early-Onset Primary Open-Angle Glaucoma Loci on 9q22 and 20p12. American Journal of Human Genetics, 2004, 74, 1314-1320.	6.2	100
34	A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nature Genetics, 2015, 47, 387-392.	21.4	97
35	Nucleotide sequences of two Bacillus subtilis promoters used by Bacillus subtilis sigma-28 RNA polymerase. Nucleic Acids Research, 1981, 9, 5991-6000.	14.5	96
36	Genetic Linkage of Autosomal Dominant Juvenile Glaucoma to 1q21-q31 in Three Affected Pedigrees. Genomics, 1994, 21, 299-303.	2.9	95

#	Article	IF	CITATIONS
37	Angiopoietin-1 is required for Schlemm's canal development in mice and humans. Journal of Clinical Investigation, 2017, 127, 4421-4436.	8.2	94
38	Genome-wide association study and meta-analysis of intraocular pressure. Human Genetics, 2014, 133, 41-57.	3.8	93
39	Molecular and Clinical Evaluation of a Patient Hemizygous for TIGR/MYOC. JAMA Ophthalmology, 2001, 119, 1674.	2.4	92
40	Association of CAV1/CAV2 Genomic Variants with Primary Open-Angle Glaucoma Overall and by Gender and Pattern of Visual Field Loss. Ophthalmology, 2014, 121, 508-516.	5.2	91
41	Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nature Communications, 2014, 5, 4883.	12.8	89
42	Biomechanical aspects of axonal damage in glaucoma: A brief review. Experimental Eye Research, 2017, 157, 13-19.	2.6	88
43	Patterns of functional vision loss in glaucoma determined with archetypal analysis. Journal of the Royal Society Interface, 2015, 12, 20141118.	3.4	87
44	Lack of Association of Mutations in Optineurin With Disease in Patients With Adult-onset Primary Open-angle Glaucoma. JAMA Ophthalmology, 2003, 121, 1181.	2.4	86
45	Early Adult-Onset POAG Linked to 15q11-13 Using Ordered Subset Analysis. , 2005, 46, 2002.		86
46	Distribution of Optineurin Sequence Variations in an Ethnically Diverse Population of Low-tension Glaucoma Patients From the United States. Journal of Glaucoma, 2006, 15, 358-363.	1.6	82
47	Association of Dietary Nitrate Intake With Primary Open-Angle Glaucoma. JAMA Ophthalmology, 2016, 134, 294.	2.5	81
48	Clinical Features of Five Pedigrees Genetically Linked to the Juvenile Glaucoma Locus on Chromosome 1q21-q31. Ophthalmology, 1995, 102, 1782-1789.	5.2	79
49	Discovery and Functional Annotation of SIX6 Variants in Primary Open-Angle Glaucoma. PLoS Genetics, 2014, 10, e1004372.	3.5	78
50	Demographic and Geographic Features of Exfoliation Glaucoma in 2 United States-Based Prospective Cohorts. Ophthalmology, 2012, 119, 27-35.	5.2	77
51	CDKN2B-AS1 Genotype–Glaucoma Feature Correlations in Primary Open-Angle Glaucoma Patients From the United States. American Journal of Ophthalmology, 2013, 155, 342-353.e5.	3.3	76
52	Four Susceptibility Loci for Gallstone Disease Identified in a Meta-analysis of Genome-Wide Association Studies. Gastroenterology, 2016, 151, 351-363.e28.	1.3	74
53	Investigation of Known Genetic Risk Factors for Primary Open Angle Glaucoma in Two Populations of African Ancestry., 2013, 54, 6248.		73
54	Metaâ€analysis of Genomeâ€Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology. Genetic Epidemiology, 2015, 39, 207-216.	1.3	72

#	Article	IF	Citations
55	Demographic, Systemic, and Ocular Factors Associated with Nonarteritic Anterior Ischemic Optic Neuropathy. Ophthalmology, 2016, 123, 2446-2455.	5.2	70
56	Solar Exposure and Residential Geographic History in Relation to Exfoliation Syndrome in the United States and Israel. JAMA Ophthalmology, 2014, 132, 1439.	2.5	66
57	Glaucoma Genes and Mechanisms. Progress in Molecular Biology and Translational Science, 2015, 134, 315-342.	1.7	65
58	Is Estrogen a Therapeutic Target for Glaucoma?. Seminars in Ophthalmology, 2016, 31, 140-146.	1.6	65
59	Endothelial Nitric Oxide Synthase Gene Variants and Primary Open-Angle Glaucoma. JAMA Ophthalmology, 2011, 129, 773.	2.4	63
60	Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nature Communications, 2018, 9, 1864.	12.8	63
61	Mammalian Homolog ofDrosophila retinal degeneration BRescues the Mutant Fly Phenotype. Journal of Neuroscience, 1997, 17, 5881-5890.	3.6	62
62	$\langle i \rangle$ LOXL1 $\langle j \rangle$ Promoter Haplotypes Are Associated with Exfoliation Syndrome in a U.S. Caucasian Population. , 2011, 52, 2372.		61
63	Biological aspects of axonal damage in glaucoma: A brief review. Experimental Eye Research, 2017, 157, 5-12.	2.6	61
64	Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature. Circulation, 2022, 145, 134-150.	1.6	57
65	The NEIGHBOR Consortium Primary Open-Angle Glaucoma Genome-wide Association Study. Journal of Glaucoma, 2013, 22, 517-525.	1.6	55
66	Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier. Bioinformatics, 2015, 31, 1310-1312.	4.1	55
67	Soluble Guanylate Cyclase α1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma. PLoS ONE, 2013, 8, e60156.	2.5	55
68	Genome-Wide Analysis of Central Corneal Thickness in Primary Open-Angle Glaucoma Cases in the NEIGHBOR and GLAUGEN Consortia., 2012, 53, 4468.		52
69	A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts. PLoS ONE, 2017, 12, e0173997.	2.5	52
70	Common and Rare Genetic Risk Factors for Glaucoma. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a017244-a017244.	6.2	50
71	Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility. Nature Communications, 2017, 8, 1755.	12.8	50
72	Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry. JAMA - Journal of the American Medical Association, 2019, 322, 1682.	7.4	50

#	Article	IF	CITATIONS
73	Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genetics, 2021, 17, e1009497.	3.5	50
74	Lack of Association between LOXL1Variants and Primary Open-Angle Glaucoma in Three Different Populations., 2008, 49, 3465.		48
75	Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye, 2020, 34, 29-39.	2.1	48
76	The Cell and Molecular Biology of Complex Forms of Glaucoma: Updates on Genetic, Environmental, and Epigenetic Risk Factors., 2012, 53, 2467.		47
77	Advances in the genomics of common eye diseases. Human Molecular Genetics, 2013, 22, R59-R65.	2.9	46
78	Comparison of Risk Factor Profiles for Primary Open-Angle Glaucoma Subtypes Defined by Pattern of Visual Field Loss: A Prospective Study. , 2015, 56, 2439.		45
79	Assessing the Association of Mitochondrial Genetic Variation With Primary Open-Angle Glaucoma Using Gene-Set Analyses., 2016, 57, 5046.		44
80	DNA Methylation Variants at <i>HIF3A</i> Locus, B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts. Diabetes, 2015, 64, 3146-3154.	0.6	43
81	Diet quality and genetic association with body mass index: results from 3 observational studies. American Journal of Clinical Nutrition, 2018, 108, 1291-1300.	4.7	43
82	A Common Variant in $\langle i \rangle$ MIR182 $\langle i \rangle$ Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium. , 2016, 57, 4528.		42
83	Drug-induced Bilateral Secondary Angle-Closure Glaucoma. Journal of Glaucoma, 2016, 25, e99-e105.	1.6	41
84	Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies. BMC Medicine, 2017, 15, 97.	5.5	41
85	Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Human Genetics, 2018, 137, 847-862.	3.8	40
86	Estrogen pathway polymorphisms in relation to primary open angle glaucoma: an analysis accounting for gender from the United States. Molecular Vision, 2013, 19, 1471-81.	1.1	40
87	Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium. PLoS Genetics, 2016, 12, e1006186.	3.5	38
88	Disruption of the Blood–Aqueous Barrier and Lens Abnormalities in Mice Lacking Lysyl Oxidase-Like 1 (LOXL1). , 2014, 55, 856.		37
89	Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Human Molecular Genetics, 2019, 28, 1298-1311.	2.9	36
90	Association of Long-term Ambient Black Carbon Exposure and Oxidative Stress Allelic Variants With Intraocular Pressure in Older Men. JAMA Ophthalmology, 2019, 137, 129.	2.5	36

#	Article	IF	CITATIONS
91	Relation Between Time Spent Outdoors and Exfoliation Glaucoma or Exfoliation Glaucoma Suspect. American Journal of Ophthalmology, 2014, 158, 605-614.e1.	3.3	35
92	Intraocular Pressure, Glaucoma, and Dietary Caffeine Consumption. Ophthalmology, 2021, 128, 866-876.	5.2	35
93	Genome-wide association study identifiesWNT7Bas a novel locus for central corneal thickness in Latinos. Human Molecular Genetics, 2016, 25, ddw319.	2.9	34
94	Prospective Study of Oral Health and Risk of Primary Open-Angle Glaucoma in Men. Ophthalmology, 2016, 123, 2318-2327.	5.2	33
95	Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Scientific Reports, 2018, 8, 3124.	3.3	33
96	Hypothesis-independent pathway analysis implicates GABA and Acetyl-CoA metabolism in primary open-angle glaucoma and normal-pressure glaucoma. Human Genetics, 2014, 133, 1319-1330.	3.8	32
97	Genetics of Primary Inherited Disorders of the Optic Nerve: Clinical Applications. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017277.	6.2	32
98	Association of a Primary Open-Angle Glaucoma Genetic Risk Score With Earlier Age at Diagnosis. JAMA Ophthalmology, 2019, 137, 1190.	2.5	32
99	Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic. Current Eye Research, 2017, 42, 568-574.	1.5	31
100	Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma. PLoS Genetics, 2018, 14, e1007145.	3.5	31
101	Nailfold Capillary Abnormalities in Primary Open-Angle Glaucoma: A Multisite Study. , 2015, 56, 7021.		30
102	DNA Copy Number Variants of Known Glaucoma Genes in Relation to Primary Open-Angle Glaucoma. Investigative Ophthalmology and Visual Science, 2014, 55, 8251-8258.	3.3	27
103	Characteristics of p.Gln368Ter Myocilin Variant and Influence of Polygenic Risk on Glaucoma Penetrance in the UK Biobank. Ophthalmology, 2021, 128, 1300-1311.	5.2	27
104	Genetic Testing for Inherited Eye Disease. JAMA Ophthalmology, 2013, 131, 1265.	2.5	26
105	Unusual Presentation of Presumed Posterior Polymorphous Dystrophy Associated With Iris Heterochromia, Band Keratopathy, and Keratoconus. Cornea, 2010, 29, 1180-1185.	1.7	25
106	The p53 Codon 72 PRO/PRO Genotype May Be Associated with Initial Central Visual Field Defects in Caucasians with Primary Open Angle Glaucoma. PLoS ONE, 2012, 7, e45613.	2.5	25
107	Association of Statin Use and High Serum Cholesterol Levels With Risk of Primary Open-Angle Glaucoma. JAMA Ophthalmology, 2019, 137, 756.	2.5	25
108	Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Experimental Eye Research, 2020, 190, 107893.	2.6	23

#	Article	IF	CITATIONS
109	Association of <i>APOE</i> With Primary Open-Angle Glaucoma Suggests a Protective Effect for <i>APOE $\hat{l}\mu 4$, 2020, 61, 3.</i>		23
110	DNA sequence variants in the tyrosinase-related protein 1 (TYRP1) gene are not associated with human pigmentary glaucoma. Molecular Vision, 2002, 8, 127-9.	1.1	23
111	The protective variant rs7173049 at LOXL1 locus impacts on retinoic acid signaling pathway in pseudoexfoliation syndrome. Human Molecular Genetics, 2019, 28, 2531-2548.	2.9	22
112	Multi-trait genome-wide association study identifies new loci associated with optic disc parameters. Communications Biology, 2019, 2, 435.	4.4	22
113	Reproductive factors and NOS3 variant interactions in primary open-angle glaucoma. Molecular Vision, 2011, 17, 2544-51.	1.1	22
114	Low prevalence of myocilin mutations in an African American population with primary open-angle glaucoma. Molecular Vision, 2012, 18, 2241-6.	1.1	22
115	No association between OPA1 polymorphisms and primary open-angle glaucoma in three different populations. Molecular Vision, 2007, 13, 2137-41.	1.1	22
116	Variations in <i>COL15A1</i> and <i>COL18A1</i> ii>influence age of onset of primary open angle glaucoma. Clinical Genetics, 2013, 84, 167-174.	2.0	21
117	Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Molecular Vision, 2008, 14, 2484-91.	1.1	21
118	Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration. Ophthalmology, 2022, 129, 694-707.	5.2	21
119	The Genetics of Intraocular Pressure. Seminars in Ophthalmology, 2013, 28, 301-305.	1.6	20
120	Expression and Regulation of LOXL1 and Elastin-related Genes in Eyes With Exfoliation Syndrome. Journal of Glaucoma, 2014, 23, S62-S63.	1.6	20
121	Contribution of the Nurses' Health Study to the Epidemiology of Cataract, Age-Related Macular Degeneration, and Glaucoma. American Journal of Public Health, 2016, 106, 1684-1689.	2.7	19
122	Resting nailfold capillary blood flow in primary open-angle glaucoma. British Journal of Ophthalmology, 2019, 103, 203-207.	3.9	19
123	The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunitiesâ€A review. Clinical and Experimental Ophthalmology, 2022, 50, 143-162.	2.6	19
124	Alcohol, Intraocular Pressure, and Open-Angle Glaucoma. Ophthalmology, 2022, 129, 637-652.	5.2	19
125	<i>EFEMP1</i> rare variants cause familial juvenileâ€onset openâ€angle glaucoma. Human Mutation, 2022, 43, 240-252.	2.5	19
126	Infectious Theories of Posner-Schlossman Syndrome. International Ophthalmology Clinics, 2011, 51, 105-115.	0.7	18

#	Article	IF	CITATIONS
127	Bupropion Use and Risk of Open-Angle Glaucoma among Enrollees in a Large U.S. Managed Care Network. PLoS ONE, 2015, 10, e0123682.	2.5	18
128	Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis. European Journal of Human Genetics, 2017, 25, 1261-1267.	2.8	18
129	Genome-Wide Linkage Scan for Primary Open Angle Glaucoma: Influences of Ancestry and Age at Diagnosis. PLoS ONE, 2011, 6, e21967.	2.5	17
130	Myocilin Mutations in Patients With Normal-Tension Glaucoma. JAMA Ophthalmology, 2019, 137, 559.	2.5	17
131	Genes Associated with Human Glaucoma. Ophthalmology Clinics of North America, 2005, 18, 335-343.	1.8	17
132	Association of Rare <i>CYP39A1</i> Variants With Exfoliation Syndrome Involving the Anterior Chamber of the Eye. JAMA - Journal of the American Medical Association, 2021, 325, 753.	7.4	16
133	Association of clusterin (CLU) variants and exfoliation syndrome: An analysis in two Caucasian studies and a meta-analysis. Experimental Eye Research, 2015, 139, 115-122.	2.6	15
134	Juvenile-onset open-angle glaucoma – A clinical and genetic update. Survey of Ophthalmology, 2022, 67, 1099-1117.	4.0	15
135	The genetic basis for adult onset glaucoma: Recent advances and future directions. Progress in Retinal and Eye Research, 2022, 90, 101066.	15.5	15
136	Molecular and clinical characterization of a patient with a chromosome 4p deletion, Wolf-Hirschhorn syndrome, and congenital glaucoma. Ophthalmic Genetics, 2001, 22, 35-41.	1.2	14
137	Translating the Low Translaminar Cribrosa Pressure Gradient Hypothesis into the Clinical Care of Glaucoma. Seminars in Ophthalmology, 2016, 31, 131-139.	1.6	14
138	Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain. Diabetes, 2017, 66, 2704-2712.	0.6	14
139	Sex hormone levels and risk of primary open-angle glaucoma in postmenopausal women. Menopause, 2018, 25, 1116-1123.	2.0	14
140	Testosterone Pathway Genetic Polymorphisms in Relation to Primary Open-Angle Glaucoma: An Analysis in Two Large Datasets., 2018, 59, 629.		14
141	Association Between LOXL1 and Pseudoexfoliation. JAMA Ophthalmology, 2008, 126, 420.	2.4	13
142	LOXL1 Polymorphisms: Genetic Biomarkers that Presage Environmental Determinants of Exfoliation Syndrome. Journal of Glaucoma, 2018, 27, S20-S23.	1.6	13
143	DNAJC30 biallelic mutations extend mitochondrial complex I–deficient phenotypes to include recessive Leber's hereditary optic neuropathy. Journal of Clinical Investigation, 2021, 131, .	8.2	13
144	Association of Matrix Metalloproteinase-9 (MMP9) Variants with Primary Angle Closure and Primary Angle Closure Glaucoma. PLoS ONE, 2016, 11, e0157093.	2.5	13

#	Article	IF	CITATIONS
145	Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin. American Journal of Ophthalmology, 2018, 187, 108-116.	3.3	12
146	A Role for Clusterin in Exfoliation Syndrome and Exfoliation Glaucoma?. Journal of Glaucoma, 2018, 27, S61-S66.	1.6	12
147	Genetic Correlations Between Diabetes and Glaucoma: An Analysis of Continuous and Dichotomous Phenotypes. American Journal of Ophthalmology, 2019, 206, 245-255.	3.3	12
148	The Genetic Influence on Corticosteroid-Induced Ocular Hypertension: A Field Positioned for Discovery. American Journal of Ophthalmology, 2019, 202, 1-5.	3.3	12
149	Association of the SIX6 locus with primary open angle glaucoma in southern Chinese and Japanese. Experimental Eye Research, 2019, 180, 129-136.	2.6	12
150	Family-Based Genome-Wide Association Study of South Indian Pedigrees Supports <i>WNT7B</i> as a Central Corneal Thickness Locus., 2018, 59, 2495.		11
151	Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to mutation status. Molecular Vision, 2017, 23, 548-560.	1.1	11
152	The Association between Serum Lipids and Intraocular Pressure in 2 Large United Kingdom Cohorts. Ophthalmology, 2022, 129, 986-996.	5.2	11
153	CPAMD8, a New Gene for Anterior Segment Dysgenesis and Childhood Glaucoma. Ophthalmology, 2020, 127, 767-768.	5. 2	10
154	Association of the <i>CAV1</i> afe <i>CAV2</i> locus with normalâ€tension glaucoma in Chinese and Japanese. Clinical and Experimental Ophthalmology, 2020, 48, 658-665.	2.6	10
155	Investigation of founder effects for the Thr377Met Myocilin mutation in glaucoma families from differing ethnic backgrounds. Molecular Vision, 2007, 13, 487-92.	1.1	10
156	Genome-Wide Association Study Identifies Two Common Loci Associated with Pigment Dispersion Syndrome/Pigmentary Glaucoma and Implicates Myopia in its Development. Ophthalmology, 2022, 129, 626-636.	5.2	10
157	Consideration for Gene-Environment Interactions as Novel Determinants of Exfoliation Syndrome. International Ophthalmology Clinics, 2014, 54, 29-41.	0.7	9
158	Quality Control for the Illumina HumanExome BeadChip. Current Protocols in Human Genetics, 2016, 90, 2.14.1-2.14.16.	3.5	9
159	Genomic loci modulating retinal ganglion cell death following elevated IOP in the mouse. Experimental Eye Research, 2018, 169, 61-67.	2.6	9
160	Exome-based investigation of the genetic basis of human pigmentary glaucoma. BMC Genomics, 2021, 22, 477.	2.8	9
161	Development of Primary Open Angle Glaucoma-Like Features in a Rhesus Macaque Colony From Southern China. Translational Vision Science and Technology, 2021, 10, 20.	2.2	9
162	Feasibility of High-Throughput Genome-Wide Genotyping using DNA from Stored Buccal Cell Samples. Biomarker Insights, 2010, 5, BMI.S5062.	2.5	8

#	Article	IF	Citations
163	A Nested Case Control Study of Plasma ICAM-1, E-Selectin and TNF Receptor 2 Levels, and Incident Primary Open-Angle Glaucoma., 2013, 54, 1797.		8
164	Low-carbohydrate-diet scores and the risk of primary open-angle glaucoma: data from three US cohorts. Eye, 2020, 34, 1465-1475.	2.1	8
165	The Association of Female Reproductive Factors with Glaucoma and Related Traits. Ophthalmology Glaucoma, 2022, 5, 628-647.	1.9	8
166	Thin minimal rim width at Bruch's membrane opening is associated with glaucomatous paracentral visual field loss. Clinical Ophthalmology, 2017, Volume 11, 2157-2167.	1.8	7
167	Carrier frequency of CYP1B1 mutations in the United States (an American Ophthalmological Society) Tj ETQq1 1	0.784314	rgBT /Overl
168	Statin Use in Relation to Intraocular Pressure, Glaucoma, and Ocular Coherence Tomography Parameters in the UK Biobank., 2022, 63, 31.		7
169	Muir-Torre Syndrome: The Importance of a Detailed Family History. Case Reports in Ophthalmology, 2019, 10, 180-185.	0.7	6
170	Cohort Study of Nonmelanoma Skin Cancer and the Risk of Exfoliation Glaucoma. Journal of Glaucoma, 2020, 29, 448-455.	1.6	6
171	Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. International Journal of Molecular Sciences, 2021, 22, 10288.	4.1	6
172	Complex Disorders in Ophthalmology. Seminars in Ophthalmology, 1995, 10, 323-330.	1.6	5
173	Lack of Association of Polymorphisms in Elastin With Pseudoexfoliation Syndrome and Glaucoma. Journal of Glaucoma, 2010, 19, 432-436.	1.6	5
174	Author Response: Comparison of Risk Factor Profiles for Primary Open-Angle Glaucoma Subtypes Defined by Pattern of Visual Field Loss: True Risk Factors or Arbituary Definition?., 2015, 56, 6532.		5
175	Mitochondrial Genetics and Optic Neuropathy. Annual Review of Vision Science, 2015, 1, 97-124.	4.4	5
176	Novel homozygous <i>OPA3</i> mutation in an Afghani family with 3-methylglutaconic aciduria type III and optic atrophy. Ophthalmic Genetics, 2019, 40, 570-573.	1.2	5
177	Fish and marine fatty acids intakes, the <i> FADS </i> genotypes and long-term weight gain: a prospective cohort study. BMJ Open, 2019, 9, e022877.	1.9	5
178	Notice of Retraction and Replacement. Kang et al. Association of statin use and high serum cholesterol levels with risk of primary open-angle glaucoma. <i>JAMA Ophthalmol.</i> 2019;137(7):756-765. JAMA Ophthalmology, 2020, 138, 588.	2.5	4
179	Background polygenic risk modulates the association between glaucoma and cardiopulmonary diseases and measures: an analysis from the UK Biobank. British Journal of Ophthalmology, 2023, 107, 1112-1118.	3.9	4
180	Soluble Guanylate Cyclase a1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma. Annals of Neurosciences, 2013, 20, 65-6.	1.7	3

#	Article	IF	Citations
181	Progress in Diagnostic Genetic Testing for Inherited Eye Disease. JAMA Ophthalmology, 2017, 135, 1385.	2.5	3
182	Macular Degeneration. JAMA Ophthalmology, 2007, 125, 1264.	2.4	2
183	The Heritability of Primary Angle Closure Anatomic Traits and Predictors of Angle Closure in South Indian Siblings. American Journal of Ophthalmology, 2021, 230, 188-199.	3.3	2
184	A survey of preoperative blood tests in primary open-angle glaucoma patients versus cataract surgery patients. Digital Journal of Ophthalmology: DJO, 2014, 20, 20-28.	0.6	2
185	Head and Neck Region Dermatological Ultraviolet-Related Cancers are AssociatedÂwith Exfoliation Syndrome in a Clinic-Based Population. Ophthalmology Glaucoma, 2022, 5, 663-671.	1.9	2
186	Genome-Wide Association Studies of Glaucoma. Essentials in Ophthalmology, 2017, , 275-290.	0.1	1
187	Interaction of background genetic risk, psychotropic medications, and primary angle closure glaucoma in the UK Biobank. PLoS ONE, 2022, 17, e0270530.	2.5	1
188	Summary of the Genetics and Molecular Biology Catalyst Meeting. Journal of Glaucoma, 2000, 9, 99-100.	1.6	0
189	Genomic Considerations in Ophthalmology. , 2010, , 712-721.		0
190	Eye Diseases. , 2013, , 1075-1081.		0
191	Molecular Mechanisms of Inherited Disease. , 2021, , 1-12.		0
192	The GGLEAM Study: Understanding Glaucoma in the Ohio Amish. International Journal of Environmental Research and Public Health, 2021, 18, 1551.	2.6	0
193	Prospective study of dietary intake of branchedâ€chain amino acids and the risk of primary openâ€angle glaucoma. Acta Ophthalmologica, 2021, , .	1.1	0
194	Genetic Testing., 2021,, 1-8.		0
195	Genetics of Glaucoma. , 2008, , 2475-2480.		0
196	Other Tests in Glaucoma: Genetic Testing. , 2010, , 149-156.		0
197	Other Tests in Glaucoma: Genetic Testing. , 2016, , 173-182.		0

#	Article	IF	CITATIONS
199	The Genetics of Common, Complex Diseases. , 2022, , 2911-2932.		0
200	Genetic Testing. , 2022, , 2859-2866.		0
201	Genetics of Glaucoma. , 2022, , 2063-2071.		O
202	Molecular Mechanisms of Inherited Disease. , 2022, , 2847-2858.		0