## **Chungyeon Cho**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808570/publications.pdf Version: 2024-02-01



CHUNCKEON CHO

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbonâ€Nanotubeâ€Based Thermoelectric Materials and Devices. Advanced Materials, 2018, 30, 1704386.                                                                                                      | 21.0 | 411       |
| 2  | Super Gas Barrier and Selectivity of Graphene Oxideâ€₽olymer Multilayer Thin Films. Advanced<br>Materials, 2013, 25, 503-508.                                                                             | 21.0 | 400       |
| 3  | Super Gas Barrier of Transparent Polymerâ^'Clay Multilayer Ultrathin Films. Nano Letters, 2010, 10,<br>4970-4974.                                                                                         | 9.1  | 299       |
| 4  | Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films<br>Enabled by Multidimensional Conjugated Nanomaterials. Advanced Energy Materials, 2016, 6, 1502168.          | 19.5 | 239       |
| 5  | Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic<br>Tellurides. Advanced Materials, 2015, 27, 2996-3001.                                                       | 21.0 | 213       |
| 6  | A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes.<br>Journal of Materials Science, 2017, 52, 12923-12959.                                              | 3.7  | 156       |
| 7  | Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.<br>Macromolecular Rapid Communications, 2015, 36, 866-879.                                               | 3.9  | 113       |
| 8  | Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy, 2016, 28, 426-432.                                                                  | 16.0 | 96        |
| 9  | Inorganic Nanoparticle Thin Film that Suppresses Flammability of Polyurethane with only a Single<br>Electrostatically-Assembled Bilayer. ACS Applied Materials & Interfaces, 2014, 6, 16903-16908.        | 8.0  | 82        |
| 10 | Precisely Tuning the Clay Spacing in Nanobrick Wall Gas Barrier Thin Films. Chemistry of Materials, 2013, 25, 1649-1655.                                                                                  | 6.7  | 54        |
| 11 | High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer<br>Assembly and Electrochemical Polymerization. ACS Applied Materials & Interfaces, 2017, 9,<br>6306-6313. | 8.0  | 51        |
| 12 | Humidity-Responsive Gas Barrier of Hydrogen-Bonded Polymer–Clay Multilayer Thin Films. Journal of<br>Physical Chemistry C, 2012, 116, 19851-19856.                                                        | 3.1  | 45        |
| 13 | A wash-durable polyelectrolyte complex that extinguishes flames on polyester–cotton fabric. RSC<br>Advances, 2016, 6, 33998-34004.                                                                        | 3.6  | 45        |
| 14 | Note: Influence of rinsing and drying routines on growth of multilayer thin films using automated deposition system. Review of Scientific Instruments, 2010, 81, 036103.                                  | 1.3  | 43        |
| 15 | Combined High Stretchability and Gas Barrier in Hydrogen-Bonded Multilayer Nanobrick Wall Thin<br>Films. ACS Applied Materials & Interfaces, 2017, 9, 7903-7907.                                          | 8.0  | 39        |
| 16 | Recent Progress in Flexible Organic Thermoelectrics. Micromachines, 2018, 9, 638.                                                                                                                         | 2.9  | 39        |
| 17 | Controlling Effective Aspect Ratio and Packing of Clay with pH for Improved Gas Barrier in Nanobrick<br>Wall Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 22914-22919.                        | 8.0  | 38        |
| 18 | Combined Ionic and Hydrogen Bonding in Polymer Multilayer Thin Film for High Gas Barrier and Stretchiness. Macromolecules, 2015, 48, 5723-5729.                                                           | 4.8  | 38        |

CHUNGYEON CHO

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electric Field Induced Morphological Transitions in Polyelectrolyte Multilayers. ACS Applied<br>Materials & Interfaces, 2013, 5, 4930-4936.                                                                                                           | 8.0  | 37        |
| 20 | Low-Temperature Thermal Reduction of Graphene Oxide Nanobrick Walls: Unique Combination of High<br>Gas Barrier and Low Resistivity in Fully Organic Polyelectrolyte Multilayer Thin Films. ACS Applied<br>Materials & Interfaces, 2014, 6, 9942-9945. | 8.0  | 37        |
| 21 | Fast Selfâ€Healing of Polyelectrolyte Multilayer Nanocoating and Restoration of Super Oxygen Barrier.<br>Macromolecular Rapid Communications, 2017, 38, 1700064.                                                                                      | 3.9  | 36        |
| 22 | Super Stretchy Polymer Multilayer Thin Film with High Gas Barrier. ACS Macro Letters, 2014, 3, 1055-1058.                                                                                                                                             | 4.8  | 29        |
| 23 | Film Stability during Postassembly Morphological Changes in Polyelectrolyte Multilayers Due to Acid<br>and Base Exposure. Langmuir, 2012, 28, 841-848.                                                                                                | 3.5  | 28        |
| 24 | Super Hydrogen and Helium Barrier with Polyelectolyte Nanobrick Wall Thin Film. Macromolecular<br>Rapid Communications, 2015, 36, 96-101.                                                                                                             | 3.9  | 28        |
| 25 | Thermally Enhanced nâ€Type Thermoelectric Behavior in Completely Organic Graphene Oxideâ€Based Thin<br>Films. Advanced Electronic Materials, 2019, 5, 1800465.                                                                                        | 5.1  | 26        |
| 26 | Stretchable electrically conductive and high gas barrier nanocomposites. Journal of Materials<br>Chemistry C, 2018, 6, 2095-2104.                                                                                                                     | 5.5  | 22        |
| 27 | Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition.<br>Nanotechnology, 2015, 26, 185703.                                                                                                                 | 2.6  | 19        |
| 28 | Unusually fast and large actuation from multilayer polyelectrolyte thin films. Soft Matter, 2019, 15, 2311-2314.                                                                                                                                      | 2.7  | 18        |
| 29 | Designable functional polymer nanocomposites via layer-by-layer assembly for highly deformable power-boosted triboelectric nanogenerators. Composites Part B: Engineering, 2022, 230, 109513.                                                         | 12.0 | 17        |
| 30 | Improved Thermoelectric Power Factor in Completely Organic Nanocomposite Enabled by <scp>l</scp> -Ascorbic Acid. ACS Applied Polymer Materials, 2019, 1, 1942-1947.                                                                                   | 4.4  | 15        |
| 31 | Organic thermoelectric thin films with large p-type and n-type power factor. Journal of Materials<br>Science, 2021, 56, 4291-4304.                                                                                                                    | 3.7  | 14        |
| 32 | Nanostructured thermoelectric composites for efficient energy harvesting in infrastructure construction applications. Cement and Concrete Composites, 2022, 128, 104452.                                                                              | 10.7 | 14        |
| 33 | Ultrathin Transparent Nanobrick Wall Anticorrosion Coatings. ACS Applied Nano Materials, 2018, 1, 5516-5523.                                                                                                                                          | 5.0  | 13        |
| 34 | Synergistic Flame Retardant Effects of Carbon Nanotubeâ€Based Multilayer Nanocoatings.<br>Macromolecular Materials and Engineering, 2021, 306, 2100233.                                                                                               | 3.6  | 11        |
| 35 | High Moisture Barrier with Synergistic Combination of SiO <i><sub>x</sub></i> and Polyelectrolyte<br>Nanolayers. Advanced Materials Interfaces, 2019, 6, 1900740.                                                                                     | 3.7  | 10        |
| 36 | Organic Thermoelectric Multilayers with High Stretchiness. Nanomaterials, 2020, 10, 41.                                                                                                                                                               | 4.1  | 10        |

3

CHUNGYEON CHO

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polyelectrolyte photopolymer complexes for flame retardant wood. Materials Chemistry Frontiers, 2022, 6, 1630-1636.                                                                                              | 5.9 | 10        |
| 38 | Reactive Wet Stamping for Patterning of Polyelectrolyte Multilayers. Langmuir, 2010, 26, 13637-13643.                                                                                                            | 3.5 | 9         |
| 39 | Effect of the Conformation Changes of Polyelectrolytes on Organic Thermoelectric Performances.<br>Macromolecular Research, 2020, 28, 997-1002.                                                                   | 2.4 | 6         |
| 40 | Conformation-dependent thermoelectric power factor of multilayer nanocomposites. Applied Surface Science, 2022, 594, 153483.                                                                                     | 6.1 | 4         |
| 41 | Influence of cation size on the thermoelectric behavior of salt-doped organic nanocomposite thin films. Applied Physics Letters, 2021, 118, 151904.                                                              | 3.3 | 3         |
| 42 | Experimental study and modeling of the energy density and time-dependent rheological behavior of carbon nanotube nanofluids with sonication. International Journal of Heat and Mass Transfer, 2022, 192, 122941. | 4.8 | 2         |