
## David Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808409/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct-drive inertial confinement fusion: A review. Physics of Plasmas, 2015, 22, .                                                                                               | 1.9  | 521       |
| 2  | Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Physics of Plasmas, 2014, 21, .           | 1.9  | 139       |
| 3  | Crossed-beam energy transfer in direct-drive implosions. Physics of Plasmas, 2012, 19, .                                                                                          | 1.9  | 133       |
| 4  | Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 2019, 565, 581-586.                                                                             | 27.8 | 103       |
| 5  | Gigabar Spherical Shock Generation on the OMEGA Laser. Physical Review Letters, 2015, 114, 045001.                                                                                | 7.8  | 100       |
| 6  | Multiple-beam laser–plasma interactions in inertial confinement fusion. Physics of Plasmas, 2014, 21, .                                                                           | 1.9  | 79        |
| 7  | Laser Smoothing and Imprint Reduction with a Foam Layer in the Multikilojoule Regime. Physical<br>Review Letters, 2009, 102, 195005.                                              | 7.8  | 73        |
| 8  | Demonstration of Fuel Hot-Spot Pressure in Excess of 50ÂGbar for Direct-Drive, Layered<br>Deuterium-Tritium Implosions on OMEGA. Physical Review Letters, 2016, 117, 025001.      | 7.8  | 72        |
| 9  | Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion<br>Experiments. Physical Review Letters, 2012, 108, 125003.                   | 7.8  | 67        |
| 10 | Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive<br>Inertial Confinement Fusion. Physical Review Letters, 2012, 108, 165003. | 7.8  | 58        |
| 11 | Experimental Validation of the Two-Plasmon-Decay Common-Wave Process. Physical Review Letters, 2012, 109, 155007.                                                                 | 7.8  | 57        |
| 12 |                                                                                                                                                                                   | 1.9  | 52        |
| 13 | National direct-drive program on OMECA and the National Ignition Facility. Plasma Physics and<br>Controlled Fusion, 2017, 59, 014008.                                             | 2.1  | 50        |
| 14 | Spherical strong-shock generation for shock-ignition inertial fusion. Physics of Plasmas, 2015, 22, .                                                                             | 1.9  | 49        |
| 15 | Improving cryogenic deuterium–tritium implosion performance on OMEGA. Physics of Plasmas, 2013,<br>20, .                                                                          | 1.9  | 48        |
| 16 | Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations. Physics of Plasmas, 2013, 20, .    | 1.9  | 47        |
| 17 | Understanding the effects of laser imprint on plastic-target implosions on OMEGA. Physics of Plasmas, 2016, 23, .                                                                 | 1.9  | 38        |
| 18 | Shell trajectory measurements from direct-drive implosion experiments. Review of Scientific Instruments, 2012, 83, 10E530.                                                        | 1.3  | 36        |

DAVID MICHEL

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Direct drive: Simulations and results from the National Ignition Facility. Physics of Plasmas, 2016, 23, 056305.                                                                     | 1.9 | 36        |
| 20 | Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser<br>Facility. Physics of Plasmas, 2013, 20, .                                          | 1.9 | 35        |
| 21 | Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator<br>Materials. Physical Review Letters, 2013, 111, 245005.                         | 7.8 | 33        |
| 22 | Laser–plasma interactions in direct-drive ignition plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 124016.                                                                  | 2.1 | 31        |
| 23 | Laser-Beam Zooming to Mitigate Crossed-Beam Energy Losses in Direct-Drive Implosions. Physical<br>Review Letters, 2013, 110, 145001.                                                 | 7.8 | 31        |
| 24 | Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using<br>Multilayer Targets. Physical Review Letters, 2016, 116, 155002.                        | 7.8 | 27        |
| 25 | Three-dimensional hydrodynamic simulations of OMEGA implosions. Physics of Plasmas, 2017, 24, .                                                                                      | 1.9 | 26        |
| 26 | From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes. Nuclear Fusion, 2019, 59, 032002.                     | 3.5 | 25        |
| 27 | Simulations and measurements of hot-electron generation driven by the multibeam two-plasmon-decay instability. Physics of Plasmas, 2017, 24, .                                       | 1.9 | 24        |
| 28 | Exploring the Saturation Levels of Stimulated Raman Scattering in the Absolute Regime. Physical Review Letters, 2010, 104, 255001.                                                   | 7.8 | 22        |
| 29 | Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions. Physical<br>Review Letters, 2017, 118, 135001.                                         | 7.8 | 22        |
| 30 | Experimental demonstration of laser imprint reduction using underdense foams. Physics of Plasmas, 2016, 23, 042701.                                                                  | 1.9 | 21        |
| 31 | Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA. Physics of Plasmas, 2017, 24, .                                                                         | 1.9 | 21        |
| 32 | Effect of the Laser Wavelength on the Saturated Level of Stimulated Brillouin Scattering. Physical<br>Review Letters, 2009, 103, 115001.                                             | 7.8 | 20        |
| 33 | Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering. Physical Review E, 2015, 91, 031104.                                            | 2.1 | 20        |
| 34 | Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the<br>National Ignition Facility. Physics of Plasmas, 2016, 23, .                      | 1.9 | 19        |
| 35 | Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition. Physics of Plasmas, 2017, 24, .                                           | 1.9 | 19        |
| 36 | Experimental investigation of the stimulated Brillouin scattering growth and saturation at 526 and 351 nm for direct drive and shock ignition. Physics of Plasmas, 2012, 19, 012705. | 1.9 | 18        |

DAVID MICHEL

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front. Physics of Plasmas, 2014, 21, 122702.              | 1.9 | 18        |
| 38 | Interaction physics for the shock ignition scheme of inertial confinement fusion targets. Plasma Physics and Controlled Fusion, 2011, 53, 124034.                | 2.1 | 16        |
| 39 | Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions.<br>Physical Review E, 2017, 95, 051202.                           | 2.1 | 16        |
| 40 | Impact of asymmetries on fuel performance in inertial confinement fusion. Physical Review E, 2018, 98, .                                                         | 2.1 | 16        |
| 41 | Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions. Physics of<br>Plasmas, 2019, 26, .                                     | 1.9 | 15        |
| 42 | Impact of stalk on directly driven inertial confinement fusion implosions. Physics of Plasmas, 2020, 27, 032704.                                                 | 1.9 | 15        |
| 43 | Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA. Physical Review Letters, 2015, 114, 155002.     | 7.8 | 12        |
| 44 | The National Direct-Drive Program: OMEGA to the National Ignition Facility. Fusion Science and Technology, 2018, 73, 89-97.                                      | 1.1 | 12        |
| 45 | Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA. Physical Review Letters, 2018, 120, 125001.                 | 7.8 | 11        |
| 46 | Implosion dynamics in direct-drive experiments. Plasma Physics and Controlled Fusion, 2015, 57, 014023.                                                          | 2.1 | 9         |
| 47 | Onboard wake vortex localization with a coherent 15 Âμm Doppler LIDAR for aircraft in formation flight configuration. Optics Express, 2020, 28, 14374.           | 3.4 | 9         |
| 48 | Overview of on-going LIL experiments. Plasma Physics and Controlled Fusion, 2008, 50, 124017.                                                                    | 2.1 | 8         |
| 49 | Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA.<br>Journal of Physics: Conference Series, 2016, 717, 012008.      | 0.4 | 8         |
| 50 | 3D xRAGE simulation of inertial confinement fusion implosion with imposed mode 2 laser drive asymmetry. High Energy Density Physics, 2020, 36, 100825.           | 1.5 | 8         |
| 51 | X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions. Review of Scientific Instruments, 2016, 87, 11E340.             | 1.3 | 7         |
| 52 | Development of a directly driven multi-shell platform: Laser drive energetics. Physics of Plasmas, 2020, 27, 022706.                                             | 1.9 | 7         |
| 53 | Time history prediction of direct-drive implosions on the Omega facility. Physics of Plasmas, 2016, 23, .                                                        | 1.9 | 6         |
| 54 | Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement<br>fusion implosions. Physics of Plasmas, 2020, 27, 112713. | 1.9 | 6         |

DAVID MICHEL

0

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Laser-plasma interaction physics in multi kilojoule experiments. Journal of Physics: Conference Series, 2010, 244, 022021.                                         | 0.4 | 4         |
| 56 | Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. Journal of Physics: Conference Series, 2016, 688, 012006.                   | 0.4 | 4         |
| 57 | Optimization of some laser and target features for laser-plasma interaction in the context of fusion.<br>Journal of Physics: Conference Series, 2008, 112, 022041. | 0.4 | 3         |
| 58 | Saturation of Raman instability in gas jet plasma in LULI 2000 laser experiments. Journal of Physics:<br>Conference Series, 2010, 244, 022022.                     | 0.4 | 2         |
| 59 | Update on recent results of LIL experiments. Journal of Physics: Conference Series, 2010, 244, 032042.                                                             | 0.4 | 2         |
| 60 | Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images.<br>Review of Scientific Instruments, 2014, 85, 11D616.      | 1.3 | 2         |
| 61 | Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system. Physical<br>Review E, 2018, 98, .                                     | 2.1 | 2         |
| 62 | Polar-direct-drive experiments at the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012009.                                        | 0.4 | 1         |
| 63 | Progress in direct-drive inertial confinement fusion. EPJ Web of Conferences, 2013, 59, 01004.                                                                     | 0.3 | 0         |
|    |                                                                                                                                                                    |     |           |

Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. , 2016, , 457-462.